
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

Distributed Search System
- Basic Infrastructure

Deliverable D4.1

Version 1.1
28.12.2006
Dissemination level: PU

Nature Prototype
Due date 31.12.2006
Lead contractor EPFL
Start date of project 01.01.2006
Duration 36 months

NEPOMUK 28.12.2006

Authors

Vasilios Darlagiannis, Ecole Polytechnique Fédérale de Lausanne (EPFL)
Roman Schmidt, Ecole Polytechnique Fédérale de Lausanne (EPFL)
Renault John, Ecole Polytechnique Fédérale de Lausanne (EPFL)
Ekaterini Ioannou, Forschungszentrum L3S

Mentors

Leo Sauermann, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Mikhail Kotelnikov, CogniumSystems
Stéphane Lauriere, Edge-IT S.A.R.L
Dr. Thomas Roth-Berghofer, TU Kaiserslautern

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Erwin-Schroedinger-Strasse (Building 57)
D 67663 Kaiserslautern
Germany
Email: bernardi@dfki.uni-kl.de, phone: +49 631 205 3582, fax: +49 631 205 4910

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH
IBM IRELAND PRODUCT DISTRIBUTION LIMITED
SAP AG
HEWLETT PACKARD GALWAY LTD
THALES S.A.
PRC GROUP - THE MANAGEMENT HOUSE S.A.
EDGE-IT S.A.R.L
COGNIUM SYSTEMS S.A.
NATIONAL UNIVERSITY OF IRELAND, GALWAY
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE
UNIVERSITAET HANNOVER
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
KUNGLIGA TEKNISKA HOEGSKOLAN
UNIVERSITA DELLA SVIZZERA ITALIANA
IRION MANAGEMENT CONSULTING GMBH

Copyright: NEPOMUK Consortium 2006
Copyright on template: Irion Management Consulting GmbH 2006

Deliverable D4.1 Version 1.1 ii

NEPOMUK 28.12.2006

Versions

Version Date Reason
0.10 10.10.2006 First draft
0.15 24.10.2006 Related work input
0.20 24.10.2006 Requirements input
0.25 21.11.2006 P-Grid concept
0.30 23.11.2006 DI component
0.35 25.11.2006 Social metadata interactions
0.40 27.11.2006 Further related work input
0.45 29.11.2006 Introduction and executive summary
0.50 01.12.2006 Refinement of related work
0.55 06.12.2006 Refinement of requirements
0.60 07.12.2006 Evaluation
0.65 08.12.2006 Conclusions
0.70 20.12.2006 Mentors’ feedback
1.00 22.12.2006 Final version
1.10 28.12.2006 Version for saubmission (M. Junker)

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

Deliverable D4.1 Version 1.1 iii

NEPOMUK 28.12.2006

Executive summary

The goal of this document is to describe the basic infrastructure of the Dis-
tributed Search System, which is realized by the Distributed Index (DI) compo-
nent. It focuses on the functionality available in the first Nepomuk prototype,
which will be later extended by additional operations to cover the mandatory
functional requirements.
More particularly, the requirement of finding information in remote desktops
raised the need of a component to perform distributed search inside a group
of Nepomuk users. DI is the identified component in the Nepomuk archi-
tecture for performing this task. The implemented component is based on
P-Grid, a highly scalable structured overlay network. Nevertheless, a number
of state-of-the-art approaches have been investigated and evaluated in their
ability to meet the functional and non-functional requirements of the Nepomuk
case studies.
Therefore, Section 2 provides the identified functional and non-functional re-
quirements. This set of requirements is the result of analyzing the case stud-
ies and gathering information based on a detailed questionnaire distributed
to the responsible partners. Moreover, commonly deployed P2P applications
have been evaluated to extract additional requirements for the targeted sys-
tem. However, meeting the complete set of non-functional requirements is
very challenging, since many conflicts arise and trade-offs are in place.
Section 3 evaluates the state-of-the-art solutions for distributed search. More
specifically, a number of P2P overlay networks have been designed aiming in
providing a number of features such as scalability, fault-tolerance, load-bal-
ancing, etc. Some well-known approaches are Chord, Pastry, CAN, Gnutella,
Edutella, RDFGrowth and Freenet, which are shortly described. However, P-
Grid has certain advantages over them, i.e., its hybrid architecture combining
unstructured and structured overlays, preserving key-order, which is essential
for complex search operations such as range queries and similarity queries
as well as great adaptability to several environment conditions, i.e., churn
rate. Therefore, it has been selected for implementing Nepomuk’s distributed
search task.
Section 4 describes the API (defined in WSDL) and the provided functionality
of the DI component. Moreover, it discusses the interactions with the other
Nepomuk components. Afterwards, Section 4.3 provides important informa-
tion on the core concepts, the architecture and the implementation of P-Grid.
A preliminary evaluation is given too, based on some locally performed ex-
periments. Section 4.5 investigates deeper the nature and the context of the
exchanged social metadata. Storage, ontologies and instances are discussed
in further detail, as they have been identified by the personal workspace model
developed in WP2000.
Summarizing, the complete followed procedure of identifying the require-
ments, evaluating the existing solutions, defining the interactions and devel-
oping the first prototype for distributed search are given in this document.
The preliminary results show promising performance for the Nepomuk case
studies.

Deliverable D4.1 Version 1.1 iv

NEPOMUK 28.12.2006

Table of contents

1 Introduction . 1
2 Requirements . 3

2.1 Use Cases and Case Study Scenarios . 3
2.1.1 Questionnaire . 3
2.1.2 P2P Scenarios . 5

2.2 Functional Requirements . 6
2.2.1 Search . 6
2.2.2 Data manipulation . 7
2.2.3 Access Control and Data Encryption 7
2.2.4 Additional P2P Requirements . 8

2.3 Non-functional Requirements. 8
2.3.1 Scalability and Expandability. 8
2.3.2 Availability, Reliability and Fault-tolerance 9
2.3.3 Security . 9
2.3.4 Persistence, Consistency & Integrity of Index . . . 10
2.3.5 Load-balance, Fairness and Heterogeneity 10
2.3.6 Autonomy .. 11
2.3.7 Constraint Requirements and Trade-offs 11

3 State-of-the-Art . 12
3.1 Unstructured overlay networks . 13

3.1.1 Gnutella and power-law networks 13
3.1.2 Freenet. 14
3.1.3 Edutella . 14

3.2 Structured overlay networks. 15
3.2.1 Chord . 16
3.2.2 CAN .. 17
3.2.3 Pastry . 17
3.2.4 Minerva . 18
3.2.5 Further Approaches . 19

3.3 Summary . 20
4 Distributed Search Component . 21

4.1 Component specification. 21
4.2 Relations with other Components . 23
4.3 P-Grid . 24

4.3.1 Concepts . 24
4.3.2 Search in P-Grid . 26
4.3.3 Architecture . 26
4.3.4 Implementation . 28

4.4 Evaluation. 32
4.4.1 Experimental setup . 32
4.4.2 Experimental results . 32
4.4.3 Discussion and Future Work . 34

4.5 Social Extensions . 34
4.5.1 Distributed Storage . 35
4.5.2 Security . 36
4.5.3 Heterogeneous Metadata . 37

Deliverable D4.1 Version 1.1 v

NEPOMUK 28.12.2006

5 Conclusions . 39

Deliverable D4.1 Version 1.1 vi

NEPOMUK 28.12.2006

1 Introduction

The social dimension of the Nepomuk project (The Social Semantic Desktop)
introduces the requirement for rich user interactions in several aspects. There-
fore, it is mandatory to provide the ability of searching for users and remote
resources. The goal of this document is to describe the basic infrastructure
of the Distributed Search System, which is realized by the Distributed Index
(DI) component. It aims at identifying the critical requirements and their
trade-offs, evaluating the existing systems and their appropriateness for Nepo-
muk, describing the details of the DI component and providing the concepts,
the architecture and the implementation details of P-Grid.
In order to motivate for the technical content of this work, we examine some
basic facts of the distributed systems. Typically, distributed system architec-
tures follow two basic paradigms: (i) Client/Server (C/S), or (ii) Peer-to-Peer
(P2P). In the C/S paradigm, participants are assigned to unambiguous roles
of either service consumers (clients) or service providers (servers). In the P2P
paradigm, the participants have potentially equivalent responsibilities and they
may concurrently act both as service consumers and providers.
The limited physical capabilities of any server poses restrictions on the num-
ber of clients that can be served, making servers critical bottlenecks as the
number of Internet users increases considerably. Moreover, the centralized
nature of the C/S paradigm makes it an easier target for distributed Denial
of Service (DoS) attacks, as opposed to the P2P alternative. Also, authorities
may apply certain censorship policies to the provided services of centralized
systems. In contrast, such an attempt in P2P approaches is significantly more
difficult. Further, today’s typical users are equipped with very powerful ma-
chines compared to the past. Such end-point devices are even capable of
providing demanding services to a certain extend. Exploiting their integration
in service provisioning can decrease significantly the service cost. Harnessing
the power of such devices has been the focus of a large part of the distributed
systems research community [Ora01].
Following a centralized approach has many disadvantages, especially for sup-
porting large communities, such as the Mandriva Linux club, one of Nepomuk’s
case studies. A decentralized approach offers better opportunities in meeting
the raised requirements of this complex system.
However, distributed systems adopting the P2P paradigm pose significantly
more complex communication needs than their C/S counterparts. Many de-
ployment difficulties, e.g., the presence of end-point devices with heteroge-
neous network, storage and computing capabilities make the development of
P2P systems more challenging. More importantly, fundamental difficulties are
introduced by three factors: (i) asynchronous concurrent events, (ii) limited
local knowledge and (iii) arbitrary failures. In addition, multi-party services
raise the need for flexible communication patterns among the participating
entities. In order to address the aforementioned issues, P2P systems develop
dedicated virtual networks, the so-called overlay networks, on top of the phys-
ical telecommunication networks [LCP+04] [CF04]. Overlay networks are a
mandatory abstraction from physical networks to both flexibly fulfill functional
requirements such as connectivity maintenance, indexing and routing, as well
as to satisfy non-functional requirements, such as scalability, fault-tolerance
and load-balancing.
However, designing such overlay networks is a challenging task. There is a
set of requirements that has to be met in designing overlay networks, which
may be effortlessly deployed on top of the physical network while making
use of available resources optimally. During the remaining of this document,
it will become clear which these requirements are, in which aspects existing
work fails to meet them, and which the proposed solution is, together with
a preliminary evaluation. The provided functionality will offer the ability of

Deliverable D4.1 Version 1.1 1

NEPOMUK 28.12.2006

finding available users or resources to the core Nepomuk components.
Accounting for the aforementioned challenges, P-Grid has been selected as
a solid infrastructure over which to develop the Nepomuk system. The wide
range of requirements coming from several independent case studies raise the
need for adaptability to different situations. P-Grid can perform efficiently in
stable environments where peers do not behave very dynamically (high churn
rate) by reaching the theoretical optimal bounds of lookup operations. In
addition, P-Grid can adapt to much more dynamic environments by utilizing
the low maintenance cost of the existing unstructured substrate to query for
the available resources, thus revealing the need to maintain the structured
topology and the distributed index. The existence of heterogeneity can be
well exploited with the introduction of super-peers. This adaptability process
is transparent to the other Nepomuk components and the developed applica-
tions.
Addressing the needs for communication in Nepomuk and bringing together
the social aspect with the technical aspects of semantic desktops, this work
will provide rich functionality to users as well as the other components of the
Nepomuk architecture. For example, the identified personas, e.g. Dirk will
be able to perform rich queries on the Nepomuk network. He will be able
to set ranges for the attributes of interest or consider rich metadata and per-
form such operations on a large scale network. In the following section, an
overview of Nepomuk use cases and several persona scenarios describe in
detail which is the required functionality that is later addressed with the pro-
vided architecture and implemented by the described prototype. A preliminary
evaluation gives promising expectations for larger scale deployment and richer
functionality in the following years.

Deliverable D4.1 Version 1.1 2

NEPOMUK 28.12.2006

2 Requirements

2.1 Use Cases and Case Study Scenarios

In the Nepomuk project, four case studies are under investigation for apply-
ing the resulting tools and mechanisms: (i) Bioscience Case Study (WP8000),
(ii) Professional Business Services Case Study (WP9000), (iii) Organizational
Knowledge Management Case Study (WP10000) and (iv) Mandriva Linux Com-
munity Case Study.
The objectives of the first case study are the adoption, application and valida-
tion of the Nepomuk system for biomedical research. The case study takes
place in the environment of Institut Pasteur.
The objectives of the second case study are the adoption, application and vali-
dation of the Nepomuk system in the work context of knowledge workers in an
international group of consulting companies, as it is facilitated and supported
by TMI/ICCS.
The third case study focuses on the particular demands that result from the
software research and development process at SAP and generally in large or-
ganizations. This process is characterized by high complexity of dependencies
between the stages of this process and the high amount of required communi-
cation and coordination efforts. To deal with this complexity, the participants
in this process rely on tools that help them to accomplish their individual tasks
as part of the whole.
The objectives of the fourth case study are the adoption, application and vali-
dation of the Nepomuk system in the context on an active open-source online
community. It will equip the on-line community of Mandriva club members
with a tool of a new generation for sharing knowledge related to the open-
source Mandriva-Linux project.
The requirements identified by these case studies shall be considered in the
integrated P2P infrastructure. However, it is mostly the requirements of the
forth case study that raise the most challenging requirements as they deal
with a large open user community. The focus is both on functional require-
ments (common core operations and services that should be provided to the
applications) as well as non-functional requirements. Apparently, it is the lat-
ter type of requirements that raise challenging issues in meeting them and
addressing their (frequently) conflicting nature.
The following subsections will present our procedure to identify functional and
non-functional requirements from the aforementioned case studies. A ques-
tionnaire covering the technical aspects and scenarios describing typical activ-
ities in the context of the case studies are described first before we present
extracted requirements. Additionally, we will present requirements discussed
in the literature of distributed systems to complete the set of requirements
concerning the Distributed Search and Storage component of Nepomuk.

2.1.1 Questionnaire

The questionnaire filled-out by all case study partners and some technical
partners, using the DI component directly from their components, covers five
different aspects of distributed information systems: (i) the data model, (ii)
manipulation and querying, (iii) data management, (iv) data access and (v)
network environment.
First of all, it is important to know what kind of data users of a distributed in-Data Model
formation system want to share and find. Therefore, the questionnaire started
with questions regarding the data structure of the inserted data, e.g., unstruc-
tured, attribute-value pairs, XML, RDF/S, binary data, etc. Additionally to the

Deliverable D4.1 Version 1.1 3

NEPOMUK 28.12.2006

type of shared data, it is important to know how the data should be indexed
and later retrievable by other users, e.g., documents can found by a unique
identifier, by their filename, or by additional meta-data added by the user
before inserting.
The answers showed that users currently share more or less any kind of data
from unstructured statements which should be annotated in the future as
supported by Nepomuk, over XML-based documents to binary files such as Mi-
crosoft Office files, PDFs and any other kind of binary files. Further, users want
to be able to find any kind of information in the shared documents, indepen-
dent of their file type, requiring a full-text index over all shared documents.
On the other hand, a unique and persistent identifier for shared objects seems
to be essential for the Bioscience case study.
This section contains questions regarding which query language is desired byManipulation and

Querying users to search for data in the distributed index and to probably update data
already maintained there. The spectrum of possible query languages ranges
from simple keyword based queries to full-fledged query languages such as
SQL, additionally providing data manipulation operations. If it is not already
part of the query language, the need for additional result operations, e.g.,
ranking operations such as top-k, can be requested. Finally, users are asked if
they need query reformulation capabilities, e.g., to reformulate a query over
heterogeneous but semantically related schemas/ontologies.
Users intend to issue mainly simple keyword-based queries but also more com-
plex queries should be supported by the DI component, such as predicative
search, conjunctive queries up to SQL (SPARQL) queries. As probabilistic data
will likely also be stored in the DI component, inference on this data should be
supported as well. Top-k queries are of interest for most of the Case Studies.
We further identified the need for query reformulation and similarity search,
e.g., users want to be able to find all cars with a certain name even if they are
annotated under the concept of vehicle.
This part of the questionnaire deals with the problems of data management,Data Management
i.e., how and how much data is inserted into the system, how long it is ex-
pected to remain there and how often data modifications are foreseen. We
were concerned about the number of data items inserted into the system as
well as the physical size of each of them. The number of data items is es-
pecially interesting for the indexing part of DI whereas the size of data items
is important for the storage and replication of those items in view of future
extensions of DI to support data storage. Together with expected insert and
update frequencies, users were asked about their consistency requirements
for those data modification operations.
The gathered responses indicate that all case studies will first insert a large
number of data at system startup and then systematically add data during the
lifetime of the network. Though the insert operation will be most frequent
one, it should be possible to update and even delete data. Instead of physi-
cally removing data from the system, it may remain in the system marked as
deprecated. Operations will be executed at the beginning at lower frequen-
cies, e.g., a query per minute and an update per hour, but might increase
fast with growing community size. The DI component will have to deal with
up to millions of entries for files of varying sizes, from small statements to
large attachments. Modifications of data should be visible after a reasonable
delay whereby shorter delays are tolerable for data shared between local col-
laborators. Those changes should probably be visible even immediately. The
last strong requirement concerns the data itself, as it should be replicated and
kept available in the system independent of users’ behavior, i.e., independent
if users are online or offline.
Next, we tried to identify user requirements regarding access restrictions forData Access
queries, updates, and deletions on a user or group level demanding a dis-
tributed or centralized user/group management. Along with access restric-
tions, we investigated the need for data encryption of index information and/or

Deliverable D4.1 Version 1.1 4

NEPOMUK 28.12.2006

data itself in the future. This is different from the first part as structured over-
lays usually spread the index information in the network enabling participating
peers to see and modify the local part of the index if it is not encrypted.
The received answers made clear that access restrictions are essential in the
case studies, either based on users/groups or role-based. The experience of
users showed that if access rights can be given at a fine-grained level, the
acceptance to share information is usually higher. For small working groups,
access restrictions should be defined and maintained distributed whereas a
centralized solution would be preferred on a company or community scale,
e.g., using LDAP. The Bioscience case study further stressed the need for data
encryption, both of index information and data itself, whereas encryption is
less important for others.
The last part of the questionnaire investigated the expected network environ-Network Environment
ment the DI has to run in each of the Case Studies. This includes on the one
hand the number of peers participating and on the other hand their proper-
ties, e.g., if mainly servers running all the time will form the network or mainly
laptops from users joining and leaving the network frequently. Independent
of which type of computers participate in the network, they might have lim-
iting factors such as low bandwidth connections, located behind a firewall or
connecting to the Internet using a dynamic IP address. At last, the expected
user behavior was of interest for us, especially how many users will insert and
query the system and with which frequency, as most users in P2P systems are
free-riders and data is usually only provided by a small fraction of peers.
The Distributed Search and Storage component will initially be formed by
around 100 peers including long running servers and laptops from users leav-
ing and joining the network frequently. Users working at home or while trav-
eling would still like to access data of their collaborators and are likely to be
behind a firewall, using a dynamic IP address and may even have a slow In-
ternet connection. In the future, larger networks consisting of around or even
more than 100.000 peers are expected also increasing the query frequency
from initially only one query per minute. Depending on the performed opera-
tion, users are willing to wait longer for global-scale operation, e.g., a global
search on all documents shared by a community, whereas local operations
performed in a local network with collaborators should be considerable faster.

2.1.2 P2P Scenarios

The above described questionnaire was intended to develop a better feeling
for the technical requirements our case study partners have for the DI com-
ponent in Nepomuk. To help everybody to better understand their scenarios
where they envision the use of our distributed index, we asked them to provide
us simple P2P scenarios. Again, also technical partners provided scenarios if
their components rely in some point on the DI component. In the following, a
few exemplary scenarios are presented:
After Claudia returned from a trip to Belfast, she wants to share her experienceData sharing in groups
about Belfast with her colleagues and friends. She took a lot of pictures of
the city, some of them she wants to make available for her friends only, and
some of them publicly available. Claudia selects some pictures for her friends
and assigns her friends to the list of people allowed to see those pictures.
She selects other pictures and just clicks on publicly available. Her friends can
now find and download her pictures whenever they want even when she is
not online. Publicly available pictures may be found by users but if Claudia is
not online, users cannot download them.
Dirk is new in his current project and the team. He already attended oneSearching the Social /

Collaborative Network project meeting but had problems following it. However, he wrote down some
terms and notes that seem to be important to that project. He wants to get

Deliverable D4.1 Version 1.1 5

NEPOMUK 28.12.2006

relevant documents and information related to these terms by searching for
them in his new collaborative network. Therefore, he issues some queries that
contain keywords such as the noted terms. His computer connects to the com-
puters of his collaborative network (co-workers that fit best to the queries),
i.e. to computers of co-workers that his computer deem to be part of his pro-
ject-related collaborative network, where a local-search on their public data is
performed. The results are then merged on Dirk’s computer and presented in
an appropriate way.
Dirk is getting to know a new tool that is used in CID, the EU project he isShared information space
now working on with partners in several European countries. The project has
an information area where the partners share information and publications
relevant to the project. This area includes information capturing the field of
P2P systems and relevant information for CID. While Dirk is examining the
information he realizes that a paper he read a few days ago is very relevant
to the project and should be accessible to the other partners in the project, a
publication about a new topology. He adds relevant CID keywords to certain
places in the paper; “Graph Topology”, “Self Organizing Network”. Partners
in the CID project who have chosen to get information about graph topology
and self organizing network get a short notice that new information is available
together with a short description of the item. Hans, who is based in Lausanne,
finds the paper interesting and looks through it but thinks that the paper is
also relevant in another aspect for CID and adds “Trust Computation”. He
also adds the paper to his private information area with the node “Distributed
Computing”. Since Peter, another CID colleague based in Hanover is interested
in trust computation he now gets a notification of the paper. He looks at the
paper and finds it very interesting, it was good that Hans added the node;
otherwise Peter would have missed the information. Dirk finds the information
space very interesting after this experience and feels that it helps him not only
to do his work but also to get to know and work together with his colleagues
in the project.
Claudia refines her to-do list based on the process model obtained from Dirk.Task delegation
She decides that the negotiation of the consortium agreement should be done
by an experienced person. She queries the P2P network for competencies
and availability. The P2P index tells her that Ambrosia, being experienced in
external negotiations and acquisitions, is the right person to contact. Claudia
delegates the task “negotiation of consortium agreement” to Ambrosia. Am-
brosia’s task manager receives the message from Claudia’s task manager via
direct connection; Ambrosia confirms that she accepts the job.

2.2 Functional Requirements

From both, the questionnaire and the provided scenarios, we were able to
extract some functional requirements we will present and discuss in the fol-
lowing. We will first focus on the functional requirements we consider relevant
for the Distributed Search and Storage component as some provided scenar-
ios require additional P2P functionality not covered by this component per
definition.

2.2.1 Search

One of the main functionality of the Distributed Search and Storage compo-
nent is the ability to efficiently search for information shared by users. Inde-
pendent of the type of data shared by users, the DI component should support
at least keyword-based search on shared information. We consider thereby
the full-text search on meta-data, annotations, statements, etc. whereas full-

Deliverable D4.1 Version 1.1 6

NEPOMUK 28.12.2006

text search on binary documents such as PDF or Microsoft Office files are out
of the scope of DI. The basic reason is the huge amount of information needed
to support such operations, which is very expensive in terms of required re-
sources for large scale distributed systems. Those should be provided by
social networks issuing queries directly at target peers not requiring a global
full-text-index of shared documents.
Additionally to keyword-based search, more complex search operations are
required, e.g., structured queries on meta-data represented by attribute-value
pairs. Meta-data provided in form of RDF and RDF Schema requires a more
powerful query language such as SPARQL which should further be supported
by the DI component. RDF and RDF Schema also enable query reformulation,
i.e., reformulation of a query from one schema to another in case heteroge-
neous schemas are used within a system. This might also require to first
identify related or similar schemas if such translations between schemas are
not provided or approved. This requires a general search for semantic similar-
ity on the schema level, file names, annotations, etc.
Finally, the DI component should support conjunctive queries and ranking
queries results, e.g., returning only the top-k hits including a quality measure-
ment.

2.2.2 Data manipulation

Data manipulation includes the insertion of data, resulting in additional index
information, and the modification or deletion of data already maintained by
the system. It is important to keep in mind that data in this context is the
actual shared information itself plus the meta-data used to describe the shared
information. A local modification of file therefore may result in an update for
the data itself and in a separate update of the meta-data used for lookups. The
DI component therefore has to provide insert, update and delete operations
for shared data. Further, the DI component should be able to flag data as
deleted instead of physically removing data from the system.
Data shared in the DI component should be replicated and kept available so
that users are able to find and retrieve shared data independent of users’
availability, i.e., users should be able to find and retrieve files even if the user
providing a file is currently not online. This requires replication of the data
itself shared in the system and the index information required to find the data.
To avoid inconsistencies after data manipulations, the system should provide
reasonable consistency, again, for the data itself and the index information.

2.2.3 Access Control and Data Encryption

For all functional requirements described above, security in terms of access
restrictions and encryption have to be provided, e.g., the DI component should
be able to define access rights for queries and data modifications for users and
groups or based on roles of users. In this way, users are able to share their
data only with collaborators, friends or users they trust, if they desire.
Encryption of data should be additionally provided as the DI component has to
deal with private and confidential data not intended to be seen by users out-
side a group or community. This involves data encryption and the encryption
of index information as it is spread out among participating peers. Further,
any communication between peers has to be encrypted if confidential data is
shared in such a network.

Deliverable D4.1 Version 1.1 7

NEPOMUK 28.12.2006

2.2.4 Additional P2P Requirements

The P2P scenarios provided by the case study partners showed the need for
P2P functionalities per definition not covered by the Distributed Search and
Storage component as they involve mainly direct network communications
and direct access to remote desktops. We do not consider those functionalities
part of DI as either no storage and search is involved or they simply cannot
be resolved by the DI component, at least not with reasonable efficiency. For
completeness, we give in the following a list of identified functionalities not
covered by the DI service.
Direct communications are messages sent from a desktop to another desktop
with the aim of user notification or to search a remote desktop. Example
operations include the full-text search on shared documents at collaborators
desktops in a company or simple instant messaging. Full-text search was also
part of the functional requirements for DI but not on large documents such
as PDF documents but only on meta-data and simple annotations, e.g., tags.
Apart from documents, users could query the shared calendar or task list of
colleagues to find a free slot for a meeting or the see what a colleague is
currently working on. After a free time slot was found at each user involved in
a meeting, another instant message could be sent to a group to add this new
event to their calendars or to delegate a task from one user to another. As
these operations occur between individual peers and no data has to be shared
over a long time for other users, those operations are out of the scope for the
DI component.
Notifications are another example involving direct communication between
two peers without the need to store or search for data. To give an example,
a user could be interested in changes of a document and wants to be notified
if a new version is available. As second example, consider the case when a
user wants to inform a community about a new paper she/he discovered and
considers as interesting for certain members of the community. In all those
cases, a message containing the notification would be sent directly from one
user to the other.

2.3 Non-functional Requirements

In addition to the aforementioned identified functional requirements, a set of
non-functional requirements is mandatory in order to provide an appropriate
working P2P system. Here, we briefly discuss the most important of them.

2.3.1 Scalability and Expandability

The factors of scale have been investigated in depth in the context of tradi-
tional distributed systems. Three basic dimensions have been identified: (i)
the numerical dimension, which consists of the number of users, objects and
services encompassed, (ii) the geographical dimension, which consists of the
distance over which the system is scattered and (iii) the administrative dimen-
sion, which consists of the number of organizations that exert control over
parts of the system [Neu94]. Modern P2P systems are challenging systems
that may scale enormously over all of the three identified dimensions. Peers
may be distributed globally and each user may have the absolute control of
each own machine. Typical sizes of P2P systems may reach several millions
of users and it is envisaged to be extended to billions. The significant peer
heterogeneity and the highly unpredictable peer failure rate observed in P2P
systems make it hard to accurately evaluate their scalability with trivial met-
rics.

Deliverable D4.1 Version 1.1 8

NEPOMUK 28.12.2006

Scalability in the design of overlay networks may be measured both in time
and space dimensions. However, there is always a trade-off. Time complexity
involves the number of hops that are required to forward the messages from
the source node to the destination. Space complexity is related to the size of
the state that each node is required to maintain in order to keep the overlay
in a functioning state. This information includes the routing table entries of
the neighbor nodes as well as the indexing structures for the advertised items.
Additionally, the size of the messages and the overhead of the maintenance
procedure should be considered in order to evaluate the scalability of the
overlay network.
Expandability expresses how a system or a component can be modified to
increase its storage, communication or functional capacity at low cost. For
example, expandability of the topology is the ease with which the topology
graph can be expanded to larger sizes. As long as an overlay network provides
linear expandability properties, there is no extra complexity imposed.

2.3.2 Availability, Reliability and Fault-tolerance

Availability is the ability of an item to be in a state to perform a required
function at a given instant of time or at any instant of time within a given
time interval, assuming that the external resources, if required, are provided.
Reliability is the ability of an item to perform a required function under given
conditions for a given time interval [ITU94].
Reliability (though closely related) is distinct from availability. An important
difference between the two concepts is that reliability refers to failure-free
operation during an interval, while availability refers to failure-free operation
at a given instant of time, usually the time when a device or system is first
accessed to provide a required function or service.
Fault-tolerance is considered as a particular mean to develop the attributes
that constitute the dependability concept. Fault-tolerance is the ability of a
system or component to continue normal operation despite the presence of
hardware or software failures. In terms of overlay networks, it expresses the
resilience of the connectivity when failures are encountered by the arbitrary
departure of peers.
As it has already been mentioned, P2P systems have been studied extensively
[SGG02], [KWX01], [SW04]. One main aspect among others is the observa-
tion of user behavior. An interesting result is the fact that the majority of the
peers tend to stay connected with the system for a relatively short time. This
results in a highly dynamic system with high join and leave rates, which hin-
ders fault-tolerant routing as it is also discussed in [ADS02] and [HK03]. This
kind of behavior imposes another requirement especially important for struc-
tured overlays. Effects like overlay partitioning are possible in case where
a special overlay maintenance procedure is not in place. High maintenance
costs to keep the structure in a stable state and provide reliable services are
some of the consequences.

2.3.3 Security

Before proceeding with the concept of security in P2P systems, it is crucial
to characterize the user behavior in such systems. Relevant peer characteri-
zations are provided in the context of rational behavior in P2P systems from
an economy view point [SP03] and in terms of dependable routing [Hol04],
[HMKR04], [HSSS04]. Overlay network security is highly relevant to node mis-
behavior. Revisiting the node classification provided in [Hol04] four different
node types may be identified: (i) Cooperative nodes, (ii) Inactive nodes, (iii)

Deliverable D4.1 Version 1.1 9

NEPOMUK 28.12.2006

Selfish nodes and (iv) Malicious nodes. Though the notion of inactive nodes
is mostly appropriate for wireless ad hoc networks, it may be of interest to
P2P networks both because P2P systems may be deployed in wireless ad hoc
networks as overlay networks and because ad hoc nodes have a peer-to-peer
relationship at the network level. Nevertheless, selfish and malicious peers
are of prime interest for the dependable and secure operation of P2P systems,
so their definition is given. Selfish nodes maximize their own gain.
Security is the ability of a system to manage, protect and distribute sensitive
information [MAC04]. In the context of P2P overlay networks, security issues
are basically raised by the presence of malicious peers. Additionally, selfish
peers may behave in a way that could have similar results. Castro [CDG+02]
and Sit [SM02] address the most important security aspects in P2P overlays.
They are mainly focusing on the forwarding operation, where malicious peers
can either drop the packages or forward them in wrong directions and on
indexing responsibilities. Furthermore, [DGM02] focus on the Denial of Service
(DoS) attack problem.

2.3.4 Persistence, Consistency and Integrity of the Indexing Structure

Advertised content’s persistence, consistency and integrity is not a function-
ality that has to be offered by the overlay network itself. For example, in
the case of distributed storage systems, an additional layer is suggested to be
used on top of the overlay network, which is responsible to handle such issues.
Interesting examples of distributed storage systems are the CFS [DKK+01] sys-
tem, which is built on top of Chord and the PAST [RD01b] system, which is
built on top of Pastry. The general principles of distributed file systems are
studied in [TN97] and [BDET00].
However, providing consistent and valid indexing information about the adver-
tised resources is a crucial requirement posed on P2P overlay networks. Index
replication mechanisms and information updating mechanisms are needed.

2.3.5 Load-balance, Fairness and Heterogeneity

Load-balance in P2P systems is the extent to which the load is evenly spread
across nodes. The load considered in this context consists of the effort re-
quired for the basic overlay operations, e.g., maintenance, routing, indexing,
caching, etc. On the one hand, designing an overlay network that avoids hot
spots increases the performance and the fault-tolerance of the overall system.
Appropriate mechanisms are required to evenly distribute the common tasks
among the peers (e.g., uniform distribution of advertised resources [BSS02]).
On the other hand, by taking into account the heterogeneous environment,
not all of the nodes are capable of offering the same amount of resources. A
fair solution should provide the necessary incentives and the weighted balance
between the resource contribution and the consumed overlay services.
Overlay network design should take into account the heterogeneity in the
physical capabilities of the peers and the user behavior. Designing schemes
that require homogeneous components can either decrease the system ca-
pabilities to those achievable by the weakest components or faulty/inefficient
operation should be expected from the least capable nodes. Moreover, the
observed variation in user behavior (e.g., up-time patterns) [MTG03] should
be taken into account in the design of the overlay to increase the efficiency of
the systems.

Deliverable D4.1 Version 1.1 10

NEPOMUK 28.12.2006

2.3.6 Autonomy

P2P systems are composed of a set of independent nodes that are not cen-
trally controlled or administered. Despite this fact many proposals adopted
hierarchical solutions for efficiency reasons (e.g., KaZaa [LRW03] and eDon-
key [eDo05]). Such systems imposes additional requirements on the support-
ing infrastructure. In the case of eDonkey particularly the servers run different
software. This is an even stronger requirement than potentially assigning a su-
per-peer role to certain capable peers. Flat approaches (either structured like
Chord [SMLN+03] and Pastry [RD01a], or unstructured like Gnutella [Gnu05a]
and Freenet [CSWH00]) are definitely preferable over the hierarchical alterna-
tives since they maintain peer autonomy.

2.3.7 Constraint Requirements and Trade-offs

This section presents several critical effects and interferences between pairs
of conflicting requirements from the aforementioned requirement set in the
context of P2P overlay networks. The degree at which the conflicting require-
ments may be fulfilled is discussed. In following list, two examples are shortly
discussed to make this issue more comprehensive.

1. Fault-tolerance versus heterogeneity. In the context of P2P sys-
tems where peers represent unreliable components, fault-tolerance is
achieved mostly by the use of redundancy and replication mechanisms.
DHT-based approaches suggest a large number of neighbors that usu-
ally increases logarithmically with respect to size of the system. While
it has been shown that such an approach provides high fault-tolerance
[LBK02], it ignores practical limitations raised by peers of low physical
capabilities. Moreover, it should be noted that the aforementioned study
makes the assumption that peer availability follows a Poisson distribu-
tion, which does not reflect the empirically observed reality [DMS05].

2. Heterogeneity versus load-balance. On the one hand, designing
large-scale, self-organized systems may be a great challenge in scenar-
ios where a large number of low capability and unstable peers partici-
pate. Currently, only non-autonomous systems (e.g., KaZaA, eDonkey)
seem to work efficiently in wide deployments (with the exception of
Overnet [Ove05]). Following such hierarchical solutions the workload is
unevenly distributed among normal peers and super-peers. On the other
hand, following non-hierarchical solutions needs to go beyond the cur-
rently proposed schemes to achieve efficiently fault-tolerant and stable
overlays. Adaptive mechanisms are required to provide the maximum
efficiency while preserving the autonomy of the peers.

Deliverable D4.1 Version 1.1 11

NEPOMUK 28.12.2006

3 State-of-the-Art

A great variety of approaches have been investigated to meet the critical set
of the identified (and possibly additional) requirements for the operation of
the P2P overlay networks. Analyzing the design mechanisms that characterize
the P2P overlay networks we can identify the following general categories:

• Overlay networks vary on the degree of structure from tightly structured
networks such as Chord [SMK+01] or Pastry [RD01a] to loosely struc-
tured ones such as Freenet [CSWH00] or Gnutella [Gnu05b]. Tightly
structured (or simply structured) overlays continuously maintain their
topology, aiming at a “perfect” structure, e.g., a hypercube or a butter-
fly topology. Structured topologies may require high maintenance cost
especially in the presence of a high churn rate. Also, they deal uni-
formly with the shared objects and services provided by the system and
they are unaware of their distribution, a fact that might cause a signif-
icant mismatch. Moreover, most Distributed Hash Table (DHT) based
approaches (which is the most common mechanism to build structured
overlay networks) cannot support easily range queries1 as effectively as
lookup queries (however, P-Grid has been designed to support range
queries, as it will become more clear in the following sections). Alterna-
tive investigations include several mappings of local data structures on
distributed network topologies, such as tries [FV02] or modifications of
traditionally used topologies such as hypercubes [SSDN02], butterflies
[MNR02] and multi-butterflies [Dat02].

On the other hand, loosely structured (or simply unstructured) overlays
do not aim to reach a predefined targeted topology, but rather they
have a more “random” structure. However, it has been observed that
certain connectivity policies (i.e., preferential attachment) may result
in topologies described by power-law networks or networks with smal-
l-world characteristics. Unstructured topologies are typically inefficient
in finding published, rare items and the embedded searching operations
are in general considerably costly in terms of network overhead (most
approaches use flooding or at best, selective dissemination mechanisms
[LRS02]). The observed power-law topology (though it provides a graph
with a small diameter2) distributes the communication effort unevenly
and introduces potential hot spots at peers with a high degree since they
become “hubs” in the resulting overlay network infrastructure. However,
in scenarios where the query distribution is non-uniform (i.e., lognormal,
Zipfian) unstructured networks may operate efficiently.

• Further, overlay networks may vary in the dependency of the peers on
each other. Approaches such as Chord or Freenet treat all of the partici-
pants equally and they are referred as pure or flat P2P networks. On the
other hand, hierarchical approaches such as Napster [Nap05] or eDon-
key [eDo05] separate the common overlay related responsibilities and
assign the majority (or all) of the tasks to a small subset of (usually)
more powerful nodes only, e.g., for resource indexing. This subset of
peers is usually termed as “servers”, “super-peers” or “ultra-peers”. The
fault-tolerance of flat approaches is considerably higher than approaches
with hierarchical structure since failures or attacks to any single peer do
not have as significant consequences. However, such approaches do
not deal well with the heterogeneity of the participating peers both in
terms of physical capabilities and user behavior. The complexity of flat
approaches is usually higher compared to the hierarchical counterparts.

1Range queries are queries searching not for a single item that matches a specific key but
rather for a set of items, which are “close” to a description based on, e.g., metadata.

2Small diameter is a desirable feature for a network topology in order to reduce the maximum
number of hops required to reach any destination in the overlay.

Deliverable D4.1 Version 1.1 12

NEPOMUK 28.12.2006

On the other hand, hierarchical solutions require a certain infrastructure
and may be controlled easier by third parties than the non-hierarchical
alternatives. The operational load is unequally balanced among the net-
worked entities and high dependency exists among them.

It should be noted that several systems follow hybrid mechanisms in more
than one dimensions. By doing so, hybrid designs aim to deal better with the
limitations of the pure approaches.

3.1 Unstructured overlay networks

Unstructured networks may be designed as non-hierarchical and hierarchical.
Gnutella 0.4 [Gnu05a] is an example of the former, which offers a non-hierar-
chical P2P approach with minimum maintenance cost. However, the employed
flooding mechanism used for querying makes Gnutella unscalable [Rit01] and
caused a system breakdown in the end of 2000 when the number of users
increased considerably.
Therefore, hierarchical approaches became more popular as solutions to de-
ployed systems. The concept of super-peers, i.e., peers with additional capa-
bilities, is introduced in these systems. Super-peers form usually the backbone
of the overlay network having normal peers placed around them. The archi-
tectures of eDonkey [eDo05] and KaZaA [LRW03] may be considered typical
representatives of this design direction. The basic drawback of this approach
is the requirement for the existence of super-peers (or servers), which sub-
sequently imposes new requirements on the system. Super-peers have to
operate legitimately since their actions have greater effect in overlay opera-
tions. Further, super-peer failures are more severe than normal peer failures.
Also, malicious behavior of super-peers has far greater impact compared to
the behavior of peers in non-hierarchical P2P systems. Additionally, there is
lack of incentives for super-peers to serve the rest of peers. Super-peers may
also become performance bottlenecks if there is not a sufficient number of
them.

3.1.1 Gnutella and power-law networks

The distribution of the node degree in a network is a significant factor for
several network properties. A number of real life complex networks, e.g., in-
come of individuals, genera, Internet file sizes [RH02], the World Wide Web,
metabolic systems, paper co-authorship, movie actors [AB02], cognitive sci-
ences [SCKH04], etc. appear to have a power law distribution of the form
P (k) = k−y where for the most typical cases 1 ≤ y ≤ 3 [WC03].
Apparently, for one of the most well-known P2P networks, the Gnutella net-
work, it has been shown that its nodes follow a power law distribution (though
not built implicitly into its design) [ALPH01], [Kab01] [PSAS01], [NG01],
[ALH02]. The underlying mechanism for this evolution is the preferential at-
tachment mechanism, where the probability Πi of connecting to peer i with
degree ci is Πi = ci/

∑
j cj. Peers tend to connect to well-known peers with

higher probability ending up in the so-called “rich get richer” phenomenon.
Networks that have power law distributed node degree are called scale-free
networks.
However, power-law networks are not an adequate solution for Nepomuk.Discussion
While such networks have desirable characteristics such as relatively small
diameter and can effectively support heterogeneity, they are vulnerable to
attacks and diseases dissemination [Ald03], [BB03]. Moreover, a node with
high degree holds an important position in the network. A possible removal

Deliverable D4.1 Version 1.1 13

NEPOMUK 28.12.2006

of the node can drastically change properties such as the diameter and might
result in multiple smaller graphs (network fragmentation). Moreover, if the
graph is considered as a communication network, nodes with high degree are
involved in delivering a large amount of traffic, ending up to potential traffic
“bottlenecks”.

3.1.2 Freenet

Freenet [CSWH00] is a peer-to-peer file-sharing application that supports the
publication, replication and retrieval of files with a special focus on protecting
the anonymity of authors and readers of the files. It is not straightforward
for a node to determine what it stores, since the files are encrypted when
they are stored and sent over the network. Freenet uses an adaptive routing
scheme for efficiently routing requests to those nodes where they are most
probable to appear. Freenet maintains routing tables, i.e., neighboring sets
that are dynamically updated, as searches and insertions of data occur. Thus,
the Freenet graph evolves dynamically over time as implied by the routing
tables. In order to further improve search efficiency, Freenet uses dynamic
replication of files along search paths.
When a peer joins a Freenet network it needs to know some existing nodes
in the network. By interacting with those neighbors it fills its initially empty
routing table. When a search request arrives at a peer, it may be that the peer
already stores the file and can immediately resolve the request. Otherwise it
has to forward the request to a neighboring peer. A peer from the routing
table that is assigned the closest identifier to the requested identifier in terms
of lexicographic distance, is selected as a next peer to forward the request
to. The routing strategy is based on depth first search with backtracking.
Requested results are routed back along the same request resolution path
and are replicated along this path to provide faster hits for further requests.
Results are stored in the local peer’s store. If the local store is full, instead of
storing the resource, an entry in the routing table is created. If the routing
table is full, again the least-recently-used (LRU) strategy is being used to
eliminate the oldest entry.
While Freenet is one of the most well known systems providing anonymityDiscussion
characteristics, it is not adequate for Nepomuk. It lacks the required scalability
properties to effectively support case studies such as the Mandriva Linux club
and the reliability/availabity needs of the advertised content. Anonymity is not
a major requirement as it can be concluded from the requirements section.

3.1.3 Edutella

Often, learning object (LO) providers do not want to abandon control over
their resources to a third party, not even among the members of a coalition.
The same concern about abandoning control also often applies to individuals,
who may not want to give away their content to any centralized repository.
In order to deal with this issue, distributed environments have shown to be a
feasible solution for interconnection, integration and access to large amounts
of information. P2P networks are one example of the impact the distribution of
information might have in the sharing of information. In such networks, peers
can offer various services to the user ranging from search and delivery of
content, to personalization and security services. In addition, they contribute
to the solution of managing the information growth, and allow every learning
resource provider to offer its information without loosing control over it.
The Edutella P2P network [NWQ+02] was developed with these principles
as main design requirements. Edutella is a schema-based P2P network for an

Deliverable D4.1 Version 1.1 14

NEPOMUK 28.12.2006

open world scenario in which LO’s are freely offered (at not charge) and every-
body is able to join (no agreement with an existing member of the network is
required). It has various service facilities implemented, like for example query
or publishing/subscription. Schema-based means that peers interchange RDF
meta-data (data about data) among each other but not the resources them-
selves, that is, they interchange information about e.g. title, description, lan-
guage and authors of a resource. This information can be queried using the
QEL query language [NS03] (based on Datalog). Metadata interchange and
search services provide the basic infrastructure needed to retrieve information
about resources and services.
Edutella aims at metadata exchange, however, it cannot be used for the needsDiscussion
of Nepomuk since it does not meet many of the identified requirements. How-
ever, lessons can be learnt on how to exchange metadata over the opted
overlay network, as it will get more clear in the rest of this report.

3.2 Structured overlay networks

Structured overlay networks tightly control their topology and place the in-
dexing information for the advertised resources at specified locations. Thus,
subsequent queries can be routed to these locations and lookup can become
more efficient. The great majority of modern structured P2P systems use Dis-
tributed Hash Tables (DHTs) as a communication infrastructure3. DHTs are
powerful abstractions, where indexing information is placed deterministically
at the corresponding peers having GUID (Nid) closest to the data object’s
advertisement unique key (Rid). Apparently, as their name denotes, DHTs
are distributed versions of the well-known hash table based data structures.
DHTs use a (commonly pre-defined among the peers) hash function to select
the way resources should be treated. In fact, using widely acceptable hash
functions in distributed environments is a way to provide a communication
mechanism without the need to exchanging messages.
DHTs provide a scalable way to store and retrieve data objects under given
keys [HKRZ02]. Each key lookup is resolved in multiple steps, resulting in a
multi-hop path to be taken in the overlay. Thus, the core operation that is
provided by DHTs is the following: given a key, route efficiently the query
to the final destination. However, since the topologies of DHTs are usually
constructed with specific constraints to provide the desired functionality, they
usually do not necessarily match the topology of the underlying network.
In principle, the following steps have to be taken to design a DHT-based
structured overlay network4.

1. Define the key space (also called “virtual address space” [CF04]) and
assign the keys to the participating peers and the advertised resources.
It is very important that both the peers and the resources share the
same key space. The length of the identifier (m) must be large enough
to make the probability of keys hashing to the same identifier negligible.

2. Define the “distance” function D(Rid, Nid), which may be used to map
the resources to the responsible peers, so that the distance function will
take its minimum value. The distance function may differ considerably
both in structure and semantics based on the particular system, e.g.,
XOR-based [MM02], prefix-based [RD01a] and arc-based [SMLN+03].

3. Define the procedure supplied to peers for populating their routing ta-
bles in order to provide highly efficient routing services. Apparently,

3Early approaches of distributed systems developed distributed structures based on Linear
Hashing [LN97], [LNS96].

4These steps are important to be provided here since the designed and implemented system
follows a structured overlay network approach.

Deliverable D4.1 Version 1.1 15

NEPOMUK 28.12.2006

this selection is based on the targeted topology, e.g., mesh, torus, ring,
hypercube, etc. In the cases where peers have the freedom to select
among a number of candidate neighbors, additional constraints or opti-
mization policies may be applied, e.g., optimal mapping to the underlying
network, observed reliability, etc.

4. Moreover, certain additional factors have to be considered, e.g., how to
handle the dynamic peer participation and the resulting effects, how to
redistribute the responsibilities for the address space, how to provide
resilient and fault-tolerant services, etc.

In the following subsections, several important DHT-based representatives are
shortly described.

3.2.1 Chord

Chord [SMLN+03] is an important reference point in the evolution of designing
DHT-based P2P overlay networks, which uses consistent hashing [KLL+97] to
assign keys to its peers. Consistent hashing is designed to let peers enter and
leave the network with minimal interruption. This decentralized scheme tends
to balance the load on the system, since each peer receives roughly the same
number of keys, and there is little movement of keys when peers join and leave
the system. In the steady state, each peer maintains routing state information
for O(logN) other peers, where N is the population of the network. Node
identifiers (i.e., Nidi

for node i) are ordered on an identifier circle using a
modulo operation (with operand 2m), thus holding that 0 ≤ Nidi

≤ 2m− 1, for
each peer. In this scheme, key Rid = k is assigned to the peer whose Nidi

is
equal to or immediately follows k in the identifier space (assuming that there
is no peer j in the system so that k < Nidj < Nidi).

Finger

Successor

0

(2 -1)/2
m

Figure 1: Chord architecture.

Chord’s architecture is shown in Figure 1 forming a ring, which is enhanced
with exponentially distributed shortcuts, called “fingers”. Each peer is con-
nected to its successor in the ring. Maintaining correct successors is a system
requirement for its correct operation. Further, while having correct successors
provides valid system operation, maintaining correct fingers (pointing to ex-
ponentially further away peers) provide efficient lookup operations. Correct
fingers permit peers to halve the distance from the final destination on each
routing step. Thus, on each peer join or leave action the system needs to

Deliverable D4.1 Version 1.1 16

NEPOMUK 28.12.2006

perform O(logN) topology maintenance operations, i.e., reassigning O(logN)
fingers and building O(logN) fingers for the newly joined peer. Moreover, in an
improved Chord design where fault-tolerance is targeted, additional O(logN)
predecessors copy their indexing information to the new peer [LNBK02].
While Chord’s architecture is an interesting approach and an evolutionary stepDiscussion
from the previously developed architectures (e.g., Gnutella [Kab01], eDonkey
[eDo05] and Freenet [CSWH00]) by addressing the lookup scalability problem
very efficiently, it does not consider every requirement found in highly dynamic
and heterogeneous P2P systems. Moreover, its design does not preserves
the key-order, thus making inefficient the support of complex queries as it is
needed in the Nepomuk project.

3.2.2 CAN

The Content Addressable Network (CAN) [RFH+01] is a distributed decen-
tralized P2P infrastructure. The architectural design is a virtual multi-dimen-
sional Cartesian coordinate space on a multi-torus (D-dimensional coordinate
space). The entire coordinate space is dynamically partitioned among all the
peers (N number of peers) in the system such that every peer possesses its
individual, distinct zone within the overall space. Each peer maintains O(D)
neighbors and the lookup procedure requires O(D D

√
N) steps. In the follow-

ing, we discuss CAN for the simplest case of a two-dimensional coordinate
space where D = 2.
The closeness metric d corresponds to the Euclidian distance. The distance
between the two rectangular zones is the Euclidean distance between their
central points. Identifiers of resources are assigned to those peers whose
zone contains the point that is an identifier of the resource.
Figure 2 represents an example of a CAN that consists of 10 peers. The
neighborhood set N (p) of each peer is represented in a box and an arrow
that points from the peer’s zone to the corresponding box. A routing algorithm
always routes a request for an identifer i towards the neighboring peer from
N (p) whose zone is the closest to the point FR(i) = (x, y).
Peers join the CAN system by splitting a zone with an existing node into two
halves and each taking the responsibility for one of the two halves. The new
node obtains the neighboring links from the old one and informs the neighbors
about the change.
The scalability properties of CAN are not as attractive as other DHTs in theDiscussion
general case where D is statically defined a priori. It is hard to select an opti-
mal value for D that can fit to the needs of the deployed system. Therefore,
it is not a very attractive solution to consider for Nepomuk.

3.2.3 Pastry

Pastry [RD01a] makes use of Plaxton-like prefix routing, to build a decen-
tralized self-organizing overlay network. Plaxton et al. [PRR97] proposes a
distributed data structure, known as the “Plaxton mesh”, optimized to support
a network overlay for locating named data objects which are connected to one
root peer.
The identifier space in Pastry consists of strings based on an alphabet with
radix, i.e., alphabet size b = 16. There are two closeness metrics defined over
the identifier space. The main closeness metric d in Pastry is basically the
longest matching prefix between two identifiers. Besides the main closeness
metric d, a specific feature of the Pastry design is that an additional closeness
metric da is defined. The closeness metric da is proportional to the geograph-

Deliverable D4.1 Version 1.1 17

NEPOMUK 28.12.2006

8� 1�

3�

9�

6�

7�

10�

4� 2�5�

(3, 2, 9, 8)�

(4, 6, 5)�

(2, 7, 9, 10, 3)�(4, 5, 7, 1)�(4, 5, 1, 10)�

(8, 7, 10, 2)�

(5, 1, 6)�

(8, 3, 7, 9, 10)� (6, 1, 9, 4)� (4, 3, 6, 1)�

Figure 2: Example of CAN system consisting of 10 peers.

ical distance between two peers. Identifiers are ordered on a circle and are
assigned to the existing peers with numerically closest identifiers. Such a peer
should have an identifier that shares the longest matching prefix with the
resource’s identifier.
Each peer has three types of neighbors. The first type of neighbor
(routeset(p)) is essential for performing the locate operation. Each peer main-
tains neighbors organized in a table with 32 rows, and b − 1 == 15 columns
where b is a system parameter usually set to 16. The second and the third
type of neighbors of peer p, nbset(p) and the leafset(p) are for maintaining
geographic locality properties and for achieving more efficient search, respec-
tively.
Similarly to Chord, Pastry does not preserve key-order in its design and thus,Discussion
it cannot efficiently support complex queries. Therefore, it does not meet the
identified Nepomuk requirements.

3.2.4 Minerva

Minerva is a Web search engine based on a P2P system [BMT+05, BMWZ05].
Every peer has its own dataset with the crawled or imported Web pages.
A local index is built based on this dataset, containing inverted lists with the
URLs and the terms of the dataset items. A DHT is used to create a distributed
directory managing the meta-information from the local indexes of the peers.
The DHT follows the Chord approach and thus each peer is responsible for
the meta-information relating to a subset of the terms found in the distributed
directory.
Querying using Minerva, begins from the local index of the querying peer.
When the results of the query over the local index are not satisfactory, the
query goes to the distributed directory. This returns a list of useful peers to
which the query is forwarded. Upon the receiving of the query, each peer
executes it on its local index and sends the results to the querying peer. The

Deliverable D4.1 Version 1.1 18

NEPOMUK 28.12.2006

querying peer is responsible for combing the results and creating the final
selection.
Although Minerva is considered as successful P2P system, it still can not beDiscussion
used for Nepomuk. The reason is that Minerva is mainly used as a Web search
engine to distribute information about the Web pages crawled by the peers.

3.2.5 Further Approaches

In this section, a short description of alternative P2P overlay networks is sup-
plied to form a complete picture of the design space.
Tapestry [ZHS+04] has similar properties as Pastry. It employs decentralized
randomness to achieve both load distribution and routing locality. In contrast
to Pastry, Tapestry uses a suffix-based routing mechanism. Moreover, the han-
dling of network locality and data object replication is performed in a different
way. The architecture of Tapestry improves the Plaxton mesh structure with
additional mechanisms to provide availability, scalability, and adaptation in the
presence of failures and attacks (multiple roots for each data object are used
by Tapestry to avoid single point of failure).
Kademlia [MM02] is a symmetrical DHT-based overlay that uses a XOR-based
distance metric to construct its topology and assign the resource advertise-
ments to peers. Kademlia’s symmetrical architecture enables the usage of
query messages for maintenance purposes, thus, reducing the required out-
-of-band maintenance signalling. Kademlia allows peers to select their neigh-
bors from sets of peers sharing the same prefix. Kademlia, Pastry and Tapestry
have operation complexity comparable to that achieved by Chord.
Omicron [DMS04] is a two-tier de Bruijn based overlay network. Omicron
has low fixed node degree for low maintenance cost. Moreover, it introduces
the concept of peer clusters that guarantee network stability. This hybrid
topology provides a tightly structured network. In parallel, it gives the freedom
of selecting neighbor peers from several members of the neighbor clusters.
Additional mechanisms have been proposed for the intra-cluster organization
that deals with peer heterogeneity. For this issue, a role-based approach
has been investigated. More specifically, four core roles have been identified:
Routers, Cachers, Indexers and Maintainers. Peers are assigned with roles
based on their capabilities and their predicted behavior so that each peer
can contribute in an efficient way without hindering and degrading the overall
performance.
SkipNet [HJS+03] and SkipGraph [AS03] are two very similar structured over-
lay networks (though they have been developed independently) that extend
skip lists [Pug90], a probabilistic data structure. While they are similar to
Chord, their basic difference is that they release the requirement that fingers
must be exponentially distributed. SkipNet and SkipGraph permit peers to
have fingers that are randomly located shortcuts.
Viceroy [MNR02] is a structured network based on the butterfly topology.
Viceroy requires only a constant number of neighbors with high probability
while its diameter is growing up logarithmically. Though, the construction and
maintenance procedures are relatively complex.
AGILE (Adaptive, Group-of-Interest-based Lookup Engine) [MS03] is a
DHT-based structured overlay network that invests on the human interests to
design an efficient system. As its name suggests, AGILE clusters peers based
on their interests (Group of Interest - GoI). GoI are also discussed in [SMZ02]
and are investigated in the context of unstructured networks in [RKP02].
Koorde [KK03] is a proposal that deploys the Chord design over de Bruijn
digraphs. The authors suggest the construction of de Bruijn digraphs with
node degree proportional to the logarithmic size of the network to avoid the

Deliverable D4.1 Version 1.1 19

NEPOMUK 28.12.2006

robustness limitations of constant degree connectivity. This requires a good
estimation of the size of the network and it obligates the most attractive fea-
ture of the de Bruijn digraphs (which is the combination of having logarithmic
diameter and constant node degree). Koorde suggests the introduction of
“imaginary nodes” to address the incremental extendability limitation of the
de Bruijn graphs.
D2B [FG03] is a content addressable network that employs de Bruijn graphs to
construct its overlay network. Although the proposed topology is a variation of
de Bruijn graphs, they provide an interesting graph operation analysis. In D2B
a procedure is suggested that allows nodes to have variable length identifiers
of more than one symbol. This is even the case for linked neighbors. The
resulting digraph is not always a de Bruijn one.
As it can be observed, the design of P2P overlay networks attracted a great
interest from the research community. The list can be extended (though not
exhaustively) to include Kelips [GBL+03], Warp [JP03], AntHill [BMM02], Hy-
perCup [SSDN02], Coral [FM03], and pSearch [TXM02]. Moreover, several
interesting surveys provide comparisons among most of the well-known sys-
tems (cf. [ATS04], [LCP+04], [CF04], [HAY+05]).

3.3 Summary

For different reasons (e.g., complexity, different focus, not correctly validated
properties, scalability, ability to support rich queries, etc.), these approaches
are not optimal selections to be considered as the P2P overlay network infras-
tructure for Nepomuk and the identified case studies.
As it will become more clear in the following sections, P-Grid is a very attrac-
tive candidate, for several reasons. It has excellent scalability properties, it
has been validated in many aspects by some first prototypes, it can efficiently
support rich and complex queries, it is totally decentralized, it has no require-
ments in peer joining process, etc. These capabilities will be discussed in
further detail in the following sections.

Deliverable D4.1 Version 1.1 20

NEPOMUK 28.12.2006

4 Distributed Search Component

WP4000 aims at providing a system, which leverages distributed search in
a decentralized and heterogeneous network environment. Search operations
can be defined in several ways with different degrees of complexity. As it
has already become clear, users might look for a particular resource or person
or they might be interested in a range of results. Therefore, the Distributed
Search Component aims to provide all these alternatives for querying. How-
ever, the basic functionality offered in the first prototype is mostly focused on
lookup operations about particular resources or persons. In fact, such oper-
ations can be performed very efficiently for certain environmental conditions,
as it will become clear in this section.
The basic idea behind such a system is to create references to resources a
user wants to share, called index entries, and distribute them into a distributed
index. Lets imagine a simple usage scenario where a user needs to retrieve a
specific resource. He issues a query5 to the distributed index to get back its
index entry, aka resource reference. This entry contains information related
to its target which are: a globally unique identifier, some application specific
data which are used for querying purposes, and the address of the actual
resource owner. Based on this, the user is able to contact the peer hosting the
desired resource in order to download it through a direct connection. More
complex usage scenarios can make use of range queries to retrieve a slice
of index entries or perform index manipulations through insert, update, or
delete functionalities. In order to provide the needed features, the distributed
search system needs to fulfill two basic sets of functionality, which are shortly
described hereafter:

Index entry manipulation Index entries are at the very heart of any search
system. Our component provides a mean to insert, update, and delete
entries in the distributed index. It is important to note that manipulation
operations are made in a best effort manner and, due to high constraint
found in distributed environment, none of the ACID6 transaction proper-
ties can be guaranteed.

Index entry retrieval Our component provides a way to query the distributed
index. Since queries are resolved locally by peers without global knowl-
edge, not all types of queries are possible. The final version of our com-
ponent will provide exact queries, range queries and structured queries.

4.1 Component specification

All functionality hereinbefore cited are included in a single component called
Distributed Index Component. It offers a distributed index of resource refer-
ences shared by Nepomuk users. To ensure a high availability, index entries
are replicated among participating computers. The resource itself remains
at the owner computer and is not replicated, therefore not accessible if the
owner goes offline.
In the final implementation, we will provide three query types: exact queries,
range queries, and structured queries. The first one takes a keyword as search
criterion and retrieves all matching index entries, the second takes a lower
bound and a higher bound to retrieve all index entries in between whereas
the last one take a structured search criterion and retrieves all matching index
entries.
Hereafter is a short description of the available functions followed by their
WSDL definition:

5An exact query in this case.
6ACID stands for Atomicity, Consistency, Isolation, and Durability.

Deliverable D4.1 Version 1.1 21

NEPOMUK 28.12.2006

Insert Stores an index entry into the distributed index. The entry is replicated
to create a fault tolerant network.

Update Updates an index entry found in the distributed index. In order to
keep the distributed index as consistent as possible, updates are prop-
agated among all reachable peers where index entry has been initially
propagated.

Delete Deletes a given index entry out of the distributed index. As for up-
dates, deletion is done as consistently as possible in the distributed in-
dex.

Search Takes a search criterion (for exact query: a string, for range query:
a lower bound and a higher bound), and uses the underlying overlay
network to retrieve all index entries corresponding to this criterion.

Our component uses several types which are: Peer, IndexEntry, and Result-
Set. Those types are used by P-Grid which is deeply explained in the following
of this chapter. For the sake of understanding, a high level overview is given
here: a Peer encapsulate all network information needed by the underneath
overlay network. The IndexEntry type represents an index entry in the dis-
tributed index. As previously cited, an index entries has some application
specific data used for searching, a globally unique identifier, GUID, a key, and
a reference to the peer hosting the resource, OwnerPeer. Finally, a ResultSet
is a set of index entries returned by a search.

<?xml version="1.0"?>

<definitions name="Comp-DistributedIndex"

targetNamespace="http://nepomuk.semanticdesktop.org/2006/wsdl/Comp-

DistributedIndex"

xmlns:tns="urn:DistributedIndex"

xmlns:ghns="http://nepomuk.semanticdesktop.org/2006/schemas/Comp-

DistributedIndex"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- this section defines all used types -->

<types>

<documentation>Types for search - result elements</documentation>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:DistributedIndex">

<xsd:complexType name="IndexEntry">

<xsd:all>

<xsd:element name="GUID" type="xsd:string"/>

<xsd:element name="data" type="xsd:string"/>

<xsd:element name="key" type="xsd:string"/>

<xsd:element name="OwnerPeer" type="tns:Peer"/>

</xsd:all>

</xsd:complexType>

<xsd:complexType name="ResultSet">

<xsd:annotation><xsd:documentation>

A set of matching index entries.

</xsd:documentation></xsd:annotation>

<xsd:sequence>

<xsd:element name="item" type="tns:IndexEntry"

minOccurs="0" maxOccurs="*"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Peer">

<xsd:annotation><xsd:documentation>

A peer in the P2P network.

</xsd:documentation></xsd:annotation>

<xsd:all>

<xsd:element name="GUID" type="xsd:string"/>

<xsd:element name="path" type="xsd:string"/>

Deliverable D4.1 Version 1.1 22

NEPOMUK 28.12.2006

<xsd:element name="ip" type="xsd:string"/>

<xsd:element name="port" type="xsd:int"/>

</xsd:all>

</xsd:complexType>

</xsd:schema>

</types>

<!-- this section defines which messages are used -->

<message name="insert">

<wsdl:part name="indexEntry" type="tns:IndexEntry"/>

</message>

<message name="update">

<part name="indexEntry" type="tns:IndexEntry"/>

</message>

<message name="delete">

<part name="indexEntry" type="tns:IndexEntry"/>

</message>

<message name="search">

<part name="keyword" type="xsd:string"/>

</message>

<message name="searchResponse">

<part name="rs" type="tns:resultset"/>

</message>

<!-- this section defines the actual WSDL interface operations -->

<interface name = "I4-Distributed Index" >

<operation name="opInsert"

pattern="http://www.w3.org/2006/01/wsdl/in"

style="http://www.w3.org/2006/01/wsdl/style/iri">

<input messageLabel="insert" />

</operation>

<operation name="opUpdate"

pattern="http://www.w3.org/2006/01/wsdl/in"

style="http://www.w3.org/2006/01/wsdl/style/iri">

<input messageLabel="update" />

</operation>

<operation name="opDelete"

pattern="http://www.w3.org/2006/01/wsdl/in"

style="http://www.w3.org/2006/01/wsdl/style/iri">

<input messageLabel="delete" />

</operation>

<operation name="opSearch"

pattern="http://www.w3.org/2006/01/wsdl/in-out"

style="http://www.w3.org/2006/01/wsdl/style/iri">

<input messageLabel="search" />

<output messageLabel="searchResponse" />

</operation>

</interface>

</definitions>

Listing 1: WSDL interface for the distributed search component

4.2 Relations with other Components

Since the DI component is at the lowest layer of Nepomuk architecture, it does
not depend on other components. As the other data sources, it is accessed
through the data services middleware, which serves as a bridge between data
sources and their consumers.
The following components are already planing to use the DI components.

Comp-Services The service component will use our component for its pres-
ence service which should inform users upon friends or colleague avail-
ability.

Comp-DesktopSemanticHelpDesk The semantic Helpdesk will distribute its
knowledge base through the DI component.

Comp-ComDetLab The detection and labeling of communities component
will use the distributed index for storing community related information.

Deliverable D4.1 Version 1.1 23

NEPOMUK 28.12.2006

Then it will rely upon the search functionality of our distributed index for
its distributed RDF triples query functionality.

Comp-MetaExcRec Metadata Exchange and Recommendations system will
take care of exchanging metadata between users. The prototype will be
tightly related to the DI component.

Comp-TMI The goal of TMI component will be to create a knowledge/data
management platform for TMI knowledge workers based on the Nepo-
muk technologies. Comp-TMI will use the distributed index to share and
retrieve information with filtered access based on business roles.

Comp-PersonalTaskManager The personal task manager is planning to use
the DI component during the second year of Nepomuk. No details are
available at the moment on how it will take advantage of the distributed
index.

4.3 P-Grid

In this sub-section, we present P-Grid [Abe01], an efficient infrastructure
to perform lookup and search operations in large-scale and highly dynamic
peer-to-peer systems. P-Grid has been designed to account for several re-
quirements and features of P2P systems. It provides a decentralized solution
where adaptability to environmental conditions is a driving factor. On the one
hand, P-Grid provides an efficient structured overlay based on the concept
of a distributed trie to achieve highly efficient lookup operations. Moreover,
it achieves key order preservation to support range queries. On the other
hand, P-Grid can utilize the underlying unstructured substrate to permit its op-
eration in highly dynamic environments where structured approaches require
high maintenance cost of the topology and the distributed index.
However, in this document, the focus is mainly on the structured P-Grid design
that can perform predictably well in relatively stable environments. Although
the unstructured substrate is available, it requires further fine tuning of its
parameters to avoid the problems identified in the previous sections and it will
be further exploited in the second Nepomuk prototype.
The basic functionality of the structured P-Grid is building a decentralized
index of shared resources remaining at resource providers and performing ef-
ficient queries. The basic concepts of P-Grid will be described in more details
in the following subsection, followed by an architecture overview and the im-
plementation description. At the end we will present a first evaluation of the
system.

4.3.1 Concepts

P-Grid is a binary trie-structured overlay network on top of the physical Inter-
net network using prefix-based routing to provide efficient lookup operations.
There are several other structured overlays which topologically resemble P-
Grid and use prefix-based routing variants, for example, Pastry [RD01a] and
particularly Kademlia [MM02] whose XOR distance metric results in the same
tree abstraction and choice of routes from all peers in complementary sub-
-trees as in P-Grid. The important distinguishing features of P-Grid include
the emergent nature of the P-Grid network based on randomized algorithms,
support for substring queries, the disentanglement of peer identifiers from the
associated key space, and the adaptive, structural replication (multi-faceted
load-balancing of storage and query load) [ADHS05].
There is another motivation for having a trie-structured overlay network in-

Deliverable D4.1 Version 1.1 24

NEPOMUK 28.12.2006

stead of a standard distributed hash table: The real advantage of traditionally
using a hash table in main memory is the constant time of lookup, insert, and
delete operations. But to facilitate this, a hash table sacrifices the order-rela-
tionship of the keys. However, over a network, where only parts of the hash
table are stored at each location, we need multiple overlay hops anyway. For
most conventional DHTs the number of hops is logarithmic in the network size.
Thus the main advantage of constant-time access no longer exists in DHTs.
This made P-Grid a natural choice for us to use it as the underlying routing net-
work to support key search, substring search and range queries in the future,
since it provides normal key search for same order of message complexity as
a DHT, but in addition can be naturally extended to support range queries.
Peers construct the binary trie by pair-wise random interactions dividing grad-
ually the key space in partitions defined by binary strings, the so-called peers’
paths. For search, each peer maintains references to other peers/partitions
at each level of the trie. Figure 3 shows a simple example of a P-Grid tree
consisting of 6 peers responsible for 4 partitions, e.g., peer F’s path is ’00’ lead-
ing to two entries in its routing table: peer E with path ’11’ at the first level
and peer B with path ’01’ at the second level. This means that at each level
of the trie the peer has references to some other peers that do not pertain
to the peer’s subtrie at that level which enables the implementation of prefix
routing. Each peer constructs its routing table such that it holds peers with
exponentially increasing distance in the key space from its own position. This
technique basically builds a small-world graph [Kle99], which enables search
in O(log N) steps.

A
1* : C, D
01* : B

Stores data
with key
prefix 00

F
1* : E
01* : B

Stores data
with key
prefix 00

B
1* : C, D
00* : F

Stores data
with key
prefix 01

C
0* : A, B
11* : E

Stores data
with key
prefix 10

D
0* : A, F
11* : E

Stores data
with key
prefix 10

E
0* : B, F
10* : D

Stores data
with key
prefix 11

00* 01*

0* 1*

10* 11*

Figure 3: P-Grid overlay network

Each peer stores a set of index items which have the peers’ path as prefix
but it is not excluded that temporarily also other index items are stored at a
peer, e.g., in Figure 3, peer F is responsible for all data with key prefix ’00’.
P-Grid’s hash function maps application data to binary strings. In the reference
implementation we assume application data to be strings for simplicity, but in
fact any data type can be used. The hash function is order-preserving, i.e., it
satisfies the following property for two input strings s1 and s2:

s1 ⊆ s2 ⇒ key(s1) ⊆ key(s2)

where ⊆ means is-prefix-of.
To enable this mapping, we first constructed a balanced trie from a sample
string database consisting of unique, lexicographically sorted strings of equal
length (sample string databases can be provided by the user). The database is
recursively bisected into equally-sized partitions until each partition is smaller
than a threshold. The keys P-Grid uses are then calculated by using the
application key to “navigate” character-wise through this trie and appending
“0” to the generated key for each “left-turn” or “1” otherwise.
Moreover, for fault-tolerance, query load-balancing, and hot-spot handling,
multiple peers are associated with the same key-space partition (structural
replication), and peers additionally also maintain multiple references to peers
with the same path (data replication). Both replication factors can be tailored

Deliverable D4.1 Version 1.1 25

NEPOMUK 28.12.2006

towards domain requirements: higher structural and data replication guaran-
tees better resilience against node failures and query-load imbalances at the
cost of reducing the available capacity of the system and increasing the re-
quired system maintenance effort to keep replicas in sync and exchanging
larger routing tables.

4.3.2 Search in P-Grid

P-Grid, like any other structured overlay approach, supports two basic opera-
tions: Retrieve(key) for searching a certain key and retrieving the associated
index item and Insert(key, value) for storing new index items. Since P-Grid
uses a binary tree, Retrieve(key) is of complexity O(log N), measured in mes-
sages required for resolving a search request, in a balanced tree, i.e., all
paths associated with peers are of equal length. Skewed data distributions
may imbalance the tree, so that it may seem that search cost may become
non-logarithmic in the number of messages. However, in [Abe02a, Abe02b]
it is shown that due to the randomized choice of routing references from
the complimentary sub-tree, the expected search cost remains logarithmic
(0.5 log N), independently of how the P-Grid is structured. The intuition why
this works is that in search operations, keys are not resolved bit-wise but in
larger blocks thus the search costs remain logarithmic in terms of messages.
This is important as P-Grid uses order-preserving hashing to compute keys,
which may lead to non-uniform key distributions.
The basic search algorithm is shown in Algorithm 1. p in the algorithm denotes
the peer that currently processes the request.

Algorithm 1 Search in P-Grid: Retrieve(key, p)
1: if π(p) ⊆ key then
2: return(d ∈ δ(p)|key(d) = key);
3: else
4: determine l such that π(key, l) = π(p, l);
5: r = randomly selected element from ρ(p, l);
6: Retrieve(key, r);
7: end if

The algorithm always terminates successfully, if the P-Grid is complete (en-
sured by the construction algorithm) and at least one peer in each partition is
reachable (ensured through redundant routing table entries and replication).
Due to the definition of the routing table ρ and Retrieve(key, p) it will always
find the location of a peer at which the search can continue (use of complete-
ness). With each invocation of Retrieve(key, p) the length of the common
prefix of peer p’s path π(p) and key increases at least by one and therefore
the algorithm always terminates. Note that, while the network has a tree/trie
abstraction, the system is not hierarchical, and all peers reside at the leaf
nodes. The peer responsible for the query, i.e. the peer’s path is a prefix
of the key (π(p) ⊆ key), can finally answer the query by responding with all
matching index entries d in the local index table δ(p).
If we consider the P-Grid tree example in Figure 3, a search initiated at peer
F for key ’100’ would first be forwarded to peer E because it is the only entry
in F’s routing table at level ’1*’. As peer E is responsible for ’11’ and not for
the key ’100’, peer E further forwards the query to peer D, which can finally
answer the query.

4.3.3 Architecture

This section will present the architecture of the distributed search and index
infrastructure taking into account the gathered user requirements and possible

Deliverable D4.1 Version 1.1 26

NEPOMUK 28.12.2006

future extensions. The architecture design was driven mainly by the following
requirements:
The main reason for having a distributed infrastructure instead of a centralizedScalability
one is the higher scalability of decentralized solutions. The peer-to-peer archi-
tecture has to be able to support millions of users in the future sharing their
knowledge and data currently only accessible at the local desktop. Whereas a
centralized solution is only able support a limited number of users, scalability
a decentralization is a major design requirements even though it is sometimes
in conflict with other requirements for the architecture.
A decentralized system consisting of unreliable loosely coupled nodes (e.g.,Fault-tolerance
user desktops and laptops) has to be able to deal with failures such as network
churn or node failures. The architecture has to take this into account to
support those failures up to a certain degree keeping the system available
without any loss of service quality.
The distributed search and index infrastructure has to be able to support futureFlexibility
extensions by new technologies, such as security, social aspects, etc. A flexible
architecture is therefore required which is able to integrate those extensions
and offering new functionalities by already defined APIs. Apart from new
technologies, the infrastructure also has to take into account domain specific
requirements, i.e., users have to be able to tailor the distributed search and
index infrastructure to their needs by providing application-specific handlers.
Last but not least, user requirements have to be considered during the de-User requirements
sign of the architecture as long as they are not already covered by other
requirements or can be integrated by future extensions or application-specific
handlers.
The architecture of P-Grid, the distributed search and index infrastructure for
Nepomuk, consists of two components: (i) the P2P basic layer and the (ii)
P2P index layer as shown in Figure 4. Both of them provide interfaces for
applications which can either use the lower level functions of the P2P basic
layer directly or the higher level functionalities of the P2P index layer on top
of the basic layer.

Application

P2P basic layer

Network layer (TCP/IP)

P2P index layer DataType

handler

Routing

Table

Index

Table

Figure 4: P-Grid architecture

The basic layer provides core functions to exploit the P2P network such as firstP2P Basic layer
of all joining and leaving a network. Therefore it is only necessary to know
one peer of the P2P system a user wants to join. The main functionalities this
basic layer provides are lookups for peers, i.e., finding a peer responsible for
a given key, and routing messages to peers either given a key or already a
destination peer. The lookup operation is useful for applications that wish to
send messages to peers responsible for a key in a direct point-to-point manner
avoiding routing the information around in the network. This is especially
important for large messages that are otherwise sent via multiple hops to
their destination, or confidential messages which should only be seen by the
sender and the designated receiver. Messages can further be routed in the
network given a key, a set of keys, and a key range. Routing a message to
a single key is the basic operation of a structured overlay as described earlier
to resolve a query for a known key. If the destination is defined by a set of

Deliverable D4.1 Version 1.1 27

NEPOMUK 28.12.2006

keys or a key range, P-Grid routes the message to all peers responsible for
the given keys or all peers in the given key range. It is thereby insured that
all targeted receive exactly one message. Additionally, applications can route
messages to all replicas of the local peer or simply retrieve a list of replicas
and references the local peer uses to route its messages (RoutingTable).
The index layer adds indexing functionalities on top of the basic layer to indexP2P Index layer
and find shared content in the P2P network by reusing core functionalities
from the basic layer. Applications can insert, update, and delete their content
which will be hashed to the underlying key-space and routed to responsible
peers which will store the new index items in their IndexTable. The application
itself remains thereby responsible for which parts of the content are hashed
and applications can even provide application-specific hash functions to bene-
fit from the knowledge of the expected key distribution, improving the overall
quality of the distributed search and index infrastructure. This functionality
has to be implemented by the DataType handlers and be provided by the ap-
plication for each type of content it wishes to index and share. The DataType
handler therefore enables applications and users to tailor the P2P system to
their needs and optimize the infrastructure using domain-specific knowledge.

4.3.4 Implementation

The following section presents the Java implementation of the P-Grid architec-
ture. We will mainly focus on the two P2P layers, basic and index, and neglect
details about the core P-Grid implementation. More details about P-Grid can
be found on the P-Grid web site7 and in the publications available there. The
two layers provide two interfaces which allow applications to use all function-
alities of P-Grid and extend or tailor it to their domain-specific needs. We will
therefore first introduce the two interfaces in more detail and finally describe
how the DataType handler is to be used by applications.
The core P2P functionalities of P-Grid are accessible via the P2P basic interface.P2P Basic Interface
The interface itself is defined in the p2p.basic package whereas the P-Grid
implementation of it can be found in the pgrid.interfaces.basic package.
The offered functions are shown in Listing 2.

// Local operations

public void init(Properties properties);

public Peer getLocalPeer();

public Peer[] getNeighbors();

public boolean isLocalPeerResponsible(Key key);

public void shutdown();

// Join and leave functions

public void join(Peer peer);

public void leave();

// Lookup operation

public Peer lookup(Key key, long timeout);

// Routing functions

public void route(Key key, Message message);

public void route(Key[] keys, Message[] message);

public void route(KeyRange range, Message message);

public void routeToReplicas(Message message);

// Direct Point-to-Point communication

public void send(Peer peer, Message message);

// Listener registration and removal

public void addP2PListener(P2PListener listener);

public void removeP2PListener(P2PListener listener);

Listing 2: The P2P basic interface

7http://www.p-grid.org/

Deliverable D4.1 Version 1.1 28

http://www.p-grid.org/

NEPOMUK 28.12.2006

The local operations allow the application to first initialize and customize the
P2P facility, e.g., by providing a listening port, before it can join the P2P
network by providing a bootstrap peer, i.e., a peer which is known to the
application. Further, applications might be interested in the properties their
local peer has in the P2P network or which neighbors, which routing table,
it uses to route messages. The lookup operation takes a key and returns a
responsible peer which can be used for example by the send operation to send
a message directly to a peer without routing it around in the network, e.g.,
with respect to the previously presented scenarios, Claudia could use the send
method to directly send a task to Dirk as soon as she knows the current IP
address of Dirk. The four route functions route a message to a destination key,
a set of keys, a key range or simply to all replicas of the local peer, respectively.
Keys are in P-Grid binary strings, e.g., ’010101’, and peers are identified by
an unique identifier, their IP address and port as well as their path, i.e., the
key partition they are responsible for. Messages can be any string or binary
data applications wish to send around in the P2P network. Finally, applications
can register a listener to be notified about new message arrivals with the
message content and the sending peer. A notification is only created if the
peer is finally responsible for a message or a direct point-to-point message
was received, messages routed over a peer don’t result in a notification for
the application.
The P2P index interface uses the P2P basic interface to provide higher levelP2P Index Interface
indexing functionality to applications. It basically allows applications to index
their local content in the P-Grid network so that other users can find it ef-
ficiently. The interface itself is defined in the p2p.index package whereas
the P-Grid implementation of it can be found in the pgrid.interfaces.index
package. The offered functions are shown in Listing 3.

// Local operations

public Collection getLocalIndexEntries();

public void shutdown();

// Data modification operations

public void insert(Collection entries);

public void update(Collection entries);

public void delete(Collection entries);

// Search function

public void search(Query query, SearchListener listener)

throws NoSuchTypeException, NoRouteToKeyException;

// Listener registration and removal

public void addIndexListener(IndexListener listener, Type type);

public void removeIndexListener(IndexListener listener, Type type);

Listing 3: The P2P index interface

As one of the local operations, the interface can provide a list of locally shared
index entries which are currently also indexed in P-Grid. To insert, update or
delete any of those items, three according functions are provided. The insert
operation simply inserts the provided entry into the P-Grid network whereas
the delete operation deletes all index items from the P-Grid network. The
update function updates all index entries with the same index entry identifier
in the P-Grid. Applications can search for content using the search function by
providing a query containing either a simple keyword, multiple keywords, an
upper and lower bound for range queries, etc. Results will be provided to any
search listener which is registered to the query identifier, i.e., additional search
listeners can be registered too. Additionally to search results, applications can
receive notifications about added, removed, or updated index entries if they
register as index listener.
Listing 4 shows all events a search listener can receive during an issued search
operation identified by a global unique identifier (GUID). As P-Grid’s communi-
cation itself is asynchronous, i.e., a query messages is sent and routed in the

Deliverable D4.1 Version 1.1 29

NEPOMUK 28.12.2006

P-Grid network but a sending peer is not directly expecting a response, we
also chose an asynchronous information flow for the implementation, realized
in this case by listeners. The use of listeners has the big advantage that the
search function is not blocking anymore and that more than one class imple-
menting the search listener interface can receive search results respectively
be notified about the search progress. As soon as the query message reached
a responsible peer and matching items were found, the peer and therefore the
listener starts to receive newSearchResult events. As multiple peers can be
responsible for the search key space, search results may arrive sequentially
leading to separate newSearchResult events. If no matching items could be
found at a peer, the noResultsFound event is raised, i.e., matching items could
be still found at other peers. A search is complete with the searchFinished
notification or the searchFailed notification in case of network or node fail-
ures, i.e., no peers responsible could be reached.

public void newSearchResult(GUID guid, Collection results);

public void noResultsFound(GUID guid);

public void searchFailed(GUID guid);

public void searchFinished(GUID guid);

Listing 4: The SearchListener interface

The data type handler enables users and applications to tailor P-Grid to theirDataType Handler
application-specific needs using prior-knowledge usable to improve the per-
formance of P-Grid. A data type defines a type of information an application
wants to share in P-Grid and is defined by an unique string, e.g., ’text/files’ for
simple file sharing. Applications have to create their own data types and pro-
vide a data type handler for each of them implementing the interface given in
Listing 5. They therefore become responsible for core functions of P-Grid such
as handling search requests, local ones as well as remote ones. The handler
interface is composed of notification methods to inform the application about
new or removed index items the local peer became responsible for. The idea
behind letting the application be aware of those events is, that applications
can extract application specific information from the index item to insert it ad-
ditionally in the local database or to keep in memory. P-Grid itself is not aware
of this information and therefore could not make use of it during a search. The
same holds for searches, P-Grid first uses the data type handler to create query
objects for a user query (AbstractQuery[] search(pgrid.QueryInterface

query)) before it routes the queries to their responsible peer(s). There, P-
Grid informs the local handler about the received query which will return the
matching index items according to the query keywords. Thereby can the
query contain additional information for the data type handler to further re-
fine a query. Currently, there are search interfaces for exact keyword-based
queries and range queries.

// modification notifications

public void indexEntryAdded(IndexEntry item);

public void indexEntryRemoved(IndexEntry item);

public void indexTableCleared();

// search handlers

public Collection handleSearch(ExactQueryInterface query);

public Collection handleSearch(RangeQueryInterface query);

public AbstractQuery[] search(pgrid.QueryInterface query);

// update handler

public boolean handleUpdate(IndexEntry item);

Listing 5: The DataTypeHandler interface

This subsection will give a short usage example of how to use P-Grid as demon-Usage Example
strated in Listing 6. After defining all local variables we add a new bootstrap
host to the list of bootstrap hosts used by P-Grid during the bootstrap process.
Those hosts are only required if a peer joins the first time a P-Grid network.
After that, the basic P2P facility is acquired and initialized with the bootstrap

Deliverable D4.1 Version 1.1 30

NEPOMUK 28.12.2006

host as property. Having a P2P basic facility, we can initialize the P2P index
facility with it. No further configuration is required at this point.
To be able to share our own index entries, we have to create and register our
own data type ’DemoType’. This type will be used by all index entries we will
create later and by the query we will create and issue in the end. Additionally
to the data type, we use the default type handler provided by P-Grid to handle
our data type. The default data type handler is sufficient to share and retrieve
data without making using any additional application-specific knowledge. At
this point we could have provided our own data type handler to tailor P-Grid’s
indexing and search functionalities. Once a data type and its handler are
created and registered, we are able to create index entries and inserting them
in the P-Grid system. The index factory returns an index entry including an
unique identifier and a binary key used to place the entry on a responsible
peer.
We now join the network without the need of giving a bootstrap host as we
defined one already during the initialization phase of the P2P facility. It is
also possible to call the join() already before index entries are created but
then probably additional insert messages have to be sent if a peer already
joined a network and developed its own path. At the end, we create and issue
a query for the keyword ’Example’. The query itself is created by the index
factory given the data type we are interested in and the keyword. To receive
matching items, in this example at least our two previously inserted index
entries, this class also has to implement the search listener and results will
be provided in the newSearchResults(p2p.basic.GUID guid, Collection

results) function.

private java.util.Properties properties = new java.util.Properties();

private P2PFactory p2pFactory;

private P2P p2pService;

private IndexFactory indexFactory;

private Index indexService;

private PGridP2P pGrid = PGridP2P.sharedInstance();

// add a bootstrap peer

properties.setProperty(Properties.BOOTSTRAP_HOSTS, "myPeer.myDomain.org:1805")

;

// init P2P basic facility

p2pFactory = PGridP2PFactory.sharedInstance();

p2pService = p2pFactory.createP2P(properties);

// init P2P index facility

indexFactory = PGridIndexFactory.sharedInstance();

indexService = indexFactory.createIndex(p2pService);

// creating and registering data type

p2p.index.Type type = indexFactory.createType("DemoType");

TypeHandler handler = new DefaultTypeHandler(type);

indexFactory.registerTypeHandler(type, handler);

// creating some example index items

Vector items = new Vector();

IndexEntry indexItem1 = indexFactory.createIndexEntry(type, "Example 1");

IndexEntry indexItem2 = indexFactory.createIndexEntry(type, "Example 2");

items.add(indexItem1);

items.add(indexItem2);

// inserting the index entries

indexService.insert(items);

// join the P-Grid network using previously defined bootstrap hosts

pGrid.join();

Query query = indexFactory.createQuery(type, "Example");

indexService.search(query, this);

Listing 6: A simple usage example of P-Grid

Deliverable D4.1 Version 1.1 31

NEPOMUK 28.12.2006

4.4 Evaluation

This sub-section will present a first evaluation of P-Grid in a local environ-
ment. The aim of our experiments was to test the basic functionality (key-
word lookups) of P-Grid in a controllable environment before it is evaluated in
a more realistic environment. In the following, we will present details about
the experimental setup before we present our results.

4.4.1 Experimental setup

We used one computer, a MacBook1.1 with an Intel Core Duo processor at
2GHz and 2GB memory running MacOSX 10.4.8, to start 40 instances of P-
Grid, each in an individual Java Virtual Machine (JVM). Each instance was
therefore independent of each other and could have also been deployed and
ran on individual machines. At the beginning, 10 keys were assigned to each
peer, i.e., a key represents a statement, meta-data, a filename, etc., result-
ing in overall 400 keys in the P-Grid system. This relatively low number of
keys was chosen to speed up experiments. To validate our experiments, we
also performed tests with larger numbers and used different key distributions,
including uniform random distribution and Pareto distribution.
The time-line of the experiments was as follows: In an initial phase starting
at time t peers join the system by contacting a bootstrap peer (until t+20sec)
and the peers form an unstructured overlay network (from t until t + 45sec)
which is used afterward to mutually replicate their data a fixed number of
times to increase availability (from t + 45sec until t + 3min). In this repli-
cation phase peers randomly choose 3 peers from the unstructured overlay
network to replicate their data. Subsequently, from t + 3min to t + 15min,
the structured overlay network is constructed. We were especially interested
in evaluating the bandwidth consumption during this phase and to compare it
to the consumption required to resolve queries later. Then we run queries on
the constructed overlay network (t + 15min to t + 35min) to analyze search
performance. Each peer performed a search every 10–30 seconds. In the final
phase (t+35min to t+55min) network churn is simulated to evaluate the fail-
ure resilience of P-Grid. Each peer independently decides to go offline 20–60
seconds every 1–3 minutes which causes considerable churn the system has
to compensate. During this phase, on average only 25–30 peers were online
alternately.

4.4.2 Experimental results

We now report some system measurements that we made to evaluate the per-
formance of the overlay network, both during the construction phase, as well
as its operational life both in a static situation (no change in peer population)
as well as under churn (peers leave and join the network).
Figure 5 shows the aggregate bandwidth and message consumption of all
peers (maintenance and queries) in Bytes/sec. During the construction phase
the bandwidth consumption reaches a peak of 700 Bytes/sec per peer. The
maintenance consumption decreases quickly down to less than 100 Bytes/sec
and becomes negligible compared to the bandwidth consumed by queries.
The same pattern is observable for the messages, with a peak of almost 3.5
messages during the construction phase and decreasing quickly down to less
than one message. The plots in Figure 5 show that the query consumption
is dominant compared to the maintenance cost for P-Grid once the P-Grid
network is constructed, even during network churn.
Figure 6(a) shows the average query latency and its standard deviation. The

Deliverable D4.1 Version 1.1 32

NEPOMUK 28.12.2006

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

Time [minutes]
B

an
dw

id
th

 [B
ps

]

construction queries (no churn) queries (churn)

maintenance
queries

(a) Bandwidth

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Time [minutes]

M
es

sa
ge

s

construction queries (no churn) queries (churn)

maintenance
queries

(b) Messages

Figure 5: Aggregate bandwidth and message consumption

absolute values are relatively low and essentially reflect the local setup. The re-
sponse time is slightly higher with a larger deviation during the network churn
because requested peers may be offline which has to be compensated. Fig-
ure 6(a) shows that the implementation is able to respond quickly to queries
and latencies may only derive from network latencies on the Internet. Fig-
ure 6(b) shows the the average number of hops (and its standard deviation)
required to resolve a query, i.e., how many peers were involved in routing a
query before the responsible peer was reached. This is important as higher
hop counts mean higher query latencies due to network latencies. We ob-
served that the number of query hops per query is as low as theoretically
expected, i.e, approx. half of the mean path length, even during churn. The
average path length was slightly above 3 and the average number of query
hops per query was approximately 1. Moreover after the construction phase
has led to full evolution of the overlay network, all peers discovered all their
replicas, and the system had an expected mean replication factor of 4, as
intended.

15 20 25 30 35 40 45 50 55
0

0.02

0.04

0.06

0.08

0.1

0.12

Time [minutes]

T
im

e
[s

ec
on

ds
]

no churn churn

standard deviation
average

(a) Latency

15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [minutes]

H
op

s

no churn churn

standard deviation
average

(b) Hops

Figure 6: Query latency and query hops

Finally we present in Figure 7 the observed success rate for issued queries,
both for a static peer population and during churn. We can see that all
queries were resolved successfully when all peers remained online and only
four queries failed during the churn phase, i.e., one at minute 47 respectively
one at minute 53 and two at minute 49. This is explainable by the relatively
low replication of some partitions due to the small network size and the devi-
ation of the replication factor. Queries only failed in the rare cases when all
peers of those partitions were offline at the same time. We did not want to
further increase the replication factor as this would have reduced the num-
ber of partitions and resulted in a too small P-Grid network. Evaluations in
the future with larger networks will show P-Grid’s failure-resilience as higher

Deliverable D4.1 Version 1.1 33

NEPOMUK 28.12.2006

average replication factors can be chosen to address this problem.

15 20 25 30 35 40 45 50 55
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Time [minutes]

S
uc

ce
ss

 r
at

e
[%

]

no churn churn

Figure 7: Query success rate

4.4.3 Discussion and Future Work

The evaluation of the first prototype of the DI component, i.e., the structured
overlay of P-Grid, shows that it is able to efficiently build an index which is
later used to resolve queries reliably even if not all peers of a network are
online all the time. The first Nepomuk prototype was focusing on resolving
exact queries only neglecting some other requirements raised by users and
mentioned earlier.
Those requirements will be considered in future prototypes of P-Grid, e.g.,
support for more complex queries, security and storage capabilities. To reach
those requirements, P-Grid’s structured overlay will be extended by further
functionalities to support more complex queries such as range queries and
similarity queries. For more complex queries, e.g., full-text search on PDF
documents, the unstructured overlay network of P-Grid will be exploited en-
abling users to issue any kind of queries to selected desktops, e.g., of friends
or colleagues. The collected user requirements showed a need for more func-
tionalities not covered by distributed search and storage. Some of them will be
enabled by P-Grid’s functionality to directly communicate with selected peers,
e.g., to enable applications to delegate tasks or to inform friends about up-
dated files.
Apart from those functional improvements for the distributed search, P-Grid
will be also extended to better meet the non-functional requirements from
users. Security will be addressed by encrypting messages and forming private
sub-networks only accessible by group members. Scalability and availability
will be further improved by implementing a two-layer super peer architecture
enabling peers with limited capabilities, e.g., users using a slow Internet con-
nection, to participate in several P-Grid networks.

4.5 Social Extensions

Previous sections explained the concepts behind P2P systems and the selec-
tion of P-Grid as the P2P system for the Nepomuk project. As explained, P-Grid
will provide a distributed search and storage system for Nepomuk by mapping
each personal workspace into a peer and thus enabling the interconnection
of the different workspaces. It will provide services for storing and querying
of the stored information and accessing the corresponding resources. Using
these services we will design a number of innovative algorithms/tasks aiming
at providing functionalities to the workspaces.

Deliverable D4.1 Version 1.1 34

NEPOMUK 28.12.2006

In this section we explain how Nepomuk will use P-Grid to provide a distributed
storage using the information available on the workspaces and list possible
problems that could arise in this scenario. More specifically, in Section 4.5.1 we
present the distributed storage in respect to the personal workspace defined in
WP2000 (creator of the information that should be distributed) and the social
algorithms/tasks defined in WP4000 (the main consumer of the information
stored in the distributed storage). We then present two possible problems
of this scenario and provide initial proposals for addressing them. The first
problem is about security in this social network (Section 4.5.2) and the second
problem is heterogeneous metadata (Section 4.5.3).

4.5.1 Distributed Storage

Each personal workspace in Nepomuk has a set of desktop resources and
a local store with metadata describing these desktop resources. A detailed
description of the personal workspace and local store are out of the scope of
this document (for more information please refer to WP2000). Our focus is on
aspects of the local store influencing the P2P system.

Figure 8: An illustration of the personal workspace, as provided by WP2000.

Figure 8 provides an illustration of the personal workspace, as provided by
WP2000. Important aspects of the local store are:

Metadata. The local store (labeled as RDF Store in the above figure) main-
tains metadata describing the desktop resources found on the personal
workspaces. A set of adapters and metadata extractors are used for
retrieving these metadata. Example resources for adapters are IMAP
emails and PDF documents, and for extractors are Microsoft Outlook
and Monzilla Suite. Adapters and metadata extractors are automatically
executed upon the creation or modification of desktop resources and the
generated metadata are added to the local store.

Ontology. Metadata stored in the local store must conform to the Nepomuk
ontology. According to the current proposal the ontology will contain
sub-ontologies that should be followed by all workspaces and sub-on-
tologies that the workspaces will define as needed.

Resource Identification. Each resource will by identified using a globally
unique URI, also stored as metadata in the local store. According to
the current proposal the resource identifier will conform to HTTP and
will be resolvable by workspaces.

The inter-connection of workspaces will create a social network which we will
use for executing social algorithms. Some examples of these algorithms are

Deliverable D4.1 Version 1.1 35

NEPOMUK 28.12.2006

“community identification” and “recommendations” (defined and explained in
WP5000). These algorithms focus on exploiting and analyzing the information
exchanged between the workspaces of the social networks. The main re-
quirement posed on the distributed storage is to be able to access the stored
information and relate it to the workspaces of Nepomuk.
The Nepomuk distributed store is responsible for the inter-connection of the
workspaces. Users will be able to select the resources of its workspace that
they would like to share with other workspaces. The metadata describing
these resources will be stored not only in the local store but also in the dis-
tributed store. The resource identifier will be also given in the metadata and
it used for relating the resources to the workspaces. The workspaces (or al-
gorithms executed by the workspaces, i.e. recommendations) will query the
metadata of the distributed store and through the use of the resource identi-
fier, identify which workspace has resources related to the specific metadata.

4.5.2 Security

Creating a social network for sharing semantic desktop context arises security
issues in Nepomuk. These security issues will be addressed both by WP4000
and WP6000. The following presents an initial list of issues that must be
considered in order to create a successful mechanism for security.

Restrictive by default. When talking about conditionally sharing information,
one of the main requirements is typically to assume that everything is by
default private, meaning that nothing is shared unless explicitly stated.
It is normally the case that the danger and consequences of sharing
sensitive data is greater than not sharing public information.

Metadata vs. Resource. We have identified two levels in which informa-
tion must be protected. The first are the metadata shared between
workspaces to inform about the available desktop resources. The second
are the actual desktop resources, corresponding to the “access paths”
given by the metadata. Even if a workspace receives metadata about
a specific resource, therefore knowing about the resource existence,
this does not imply that the resource itself is also disclosable for the
workspace.

Resource Access. Access to resources may be based on an identity (e.g.
“my boss”) or group membership (e.g. member of “my friends” group).
However, in many cases we may not know the identity of the group
or some of its members. Thus, it should also be allowed to specify
access based on more general properties of the requester (e.g. “student
younger than 25” or “an employee of my company”) which are more
general and not necessarily known in advance. A good source for these
properties is the ontology of the specific workspace.

User Awareness. It should not be forgotten that we are not talking about
server security and therefore it is not possible to assume qualified ad-
ministrators taking care of defining all these conditions. Normal users
are the ones who will personalize and configure their protection and de-
cide what is shared to whom. Therefore, it should be ease to do it and
without assuming expertise.

A possible mechanism for the Nepomuk security is policy-based access control.
A policy is a statement specifying the behavior of a system. Different kind of
policies allow to regulate information disclosure (privacy policies), to control
access to resources (security policies) and to estimate trust based on user’s
properties (trust management policies). Policies are abstracted from the im-
plementation and dynamic, change without the need to restart the system. In

Deliverable D4.1 Version 1.1 36

NEPOMUK 28.12.2006

addition, they are typically declarative (describe the “what” but not the “how”)
and thus closer to the way users think.
In the Nepomuk scenario, policies will be access rules for both the metadata
and the desktop resources. Accessing rules can be defined in respect to the
users of social network (individual users or group of users) or in respect to the
user’s ontology. A ‘trust negotiation’ mechanism [NOW04, GNO+04] will then
use these policies to establish the trust between two peers.

4.5.3 Heterogeneous Metadata

The Nepomuk scenario tries to extend the capabilities of individual workspaces
by enabling sharing and interconnections between the different workspaces.
This is done by merging the metadata of different local stores into a single
dataset, the distributed store. This distributed store provides a uniform way
to access the metadata, but since the context of the metadata is not also
unified it remains heterogeneous.
Having heterogeneous metadata in the distributed store limits the functionali-
ties by Nepomuk. For example consider the social algorithms executed using
the metadata of the distributed storage, such as community identification and
generation of recommendations. These algorithms perform an analysis on the
context of the distributed store mainly for generating information to describe
these metadata. Obviously, the success of these algorithms depends on the
actual context of the distributed store and if the metadata are not heteroge-
neous the results produced will be more complete and valuable.
In the following paragraphs, we present two approaches for converting the
context of heterogeneous metadata and propose initial approaches for ad-
dressing them in the Nepomuk scenario. Although managing heterogeneous
metadata is not directly addressed by Nepomuk, we plan to investigate the
problem in the extend that this appears in the “Metadata extraction and self-
-organized metadata alignment” task of WP5000.
At the instance level the metadata are heterogeneous manly because theInstance level
different workspaces use different naming to describe the same object. For
example consider the metadata describing the emails of two workspaces. The
user of the first workspace uses only the first name of persons in its address
book whereas the user of the second workspace uses the full name of persons.
The persons defined by the emails of the first user can not be automatically
related to the persons defined by the emails of the second user, and thus the
exchange of the metadata is not enough for the successful execution of social
algorithms.
A possible method to converge the context of the metadata at the instance
level is to process the exchange metadata to discover the existing enti-
ties along with the objects that refer to each entity. Initial proposals in
the area of Personal Information Management used string similarity mea-
sures [BMC+03] to identify the similar objects. The recent proposals follow
a different approach, they argue that it is important to facilitate the asso-
ciations and move towards discover semantic relationships between similar
objects [DHM05, MCN06].
For the Nepomuk scenario, the most suitable approach is the one that dis-
covers the entities through the associations between the exiting objects. An
important requirement is to design an algorithm that will be executed upon
the exchange metadata, before the execution of the social algorithms. The
results of the algorithm should be a set of entities and the corresponding set
of objects for each entity, represented as metadata accompanying the original
metadata.
As explained in Section 4.5.1 each peer can use a different ontology for de-Ontology level
scribing its metadata. This becomes a problem when a peer tries to interpret

Deliverable D4.1 Version 1.1 37

NEPOMUK 28.12.2006

metadata produced by another peer with a different unknown ontology. Con-
sider for example one peer using an ontology in which a scientific paper is
denoted by the term “paper”. Another peer uses another ontology where the
same concept is called “article”. If the first peer now receives metadata with
the term “article” from the other peer, it does not “know” that it identifies ac-
tually when it refer to a ‘paper’. For exploiting at the maximum the exchange
matadata from other peers one needs to somehow detect that “article” is
similar to “paper”.
One specificity of peer-to-peer systems is also that we do not know a priori the
other peers, i.e., a new peer, using a new unknown ontology, can appear at
any time. We don’t only have to handle several ontologies, but we also need
the possibility to take dynamically into account new unknown ontologies.
One possible solution to address those problems is a malleable schema ap-
proach [DH05]. The idea is to consider the ontology used by one peer as
a malleable schema. That is, when new ontologies (or ontology elements)
appears, we just add them to the peer’s malleable ontology, so that it evolves
over time. In parallel to the malleable ontology we maintain metadata to
describe the relations between the elements of the malleable ontology. For
example the metadata about the malleable ontology can be something like
’the class “paper” is a synonym of the class “article” with a probability 0.8’ or
’the class “paper” is a hyponym of the class “article” with a probability 0.6’.
Note however that the approach described above does not make any assump-
tion on the nature or provenance of the relationships between schema ele-
ments. A reasonable extension of the above approach would be to combine
evidences coming from several different techniques, such as instances based,
name based or user feedback.

Deliverable D4.1 Version 1.1 38

NEPOMUK 28.12.2006

5 Conclusions

The DI component has been designed to provide the basic functionality on
locating users and remote resources in a distributed and scalable way. It
provides a complete and rich interface to allow several kinds of queries (i.e.,
exact, ranged, structured) by meeting several critical requirements raised be
the analysis of the Nepomuk case studies as well as commonly deployed P2P
applications. The set of non-functional requirements includes scalability, fault-
-tolerance, availability and privacy. This is exactly what it has to be provided
to enable meaningful and useful social semantic desktop applications in the
context of the investigated case studies.
The functionality has been developed based on the P-Grid overlay network
and it is provided to the other Nepomuk components via a WSDL interface.
The current implementation is in a stable state and integration of the Nepomuk
components is in progress. The current implementation supports exact queries
only (i.e., looking for hash values of the advertised resources).
In the following period, the focus will be to extend the provided functionality
to enable richer and more complex queries (ranged and structured). Moreover,
the system will be extended to support the remote storage of the resources
and provide a higher availability by implementing replication mechanisms. Pri-
vacy will be also the focus of the development team by providing several
independent overlays that can be customized to the needs of the cooperation
groups of Nepomuk users.

Deliverable D4.1 Version 1.1 39

NEPOMUK 28.12.2006

References

[AB02] R. Albert and A.-L. Barabasi. Statistical Mechanics of Complex
Networks. Reviews of Modern Physics, 74(47), 2002.

[Abe01] K. Aberer. P-Grid: A self-organizing access structure for P2P in-
formation systems. In 6th International Conference on Coopera-
tive Information Systems (CoopIS), Pages 179–194, London, UK,
2001. Springer-Verlag.

[Abe02a] K. Aberer. Efficient Search in Unbalanced, Randomized Peer-
To-Peer Search Trees. Technical Report IC/2002/79, Ecole Poly-
technique Fédérale de Lausanne (EPFL), 2002.

[Abe02b] K. Aberer. Scalable Data Access in P2P Systems Using Unbalanced
Search Trees. In 4th Workshop on Distributed Data and Structures
(WDAS’2002), 2002.

[ADHS05] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing
data-oriented overlay networks. In 31st International Conference
on Very Large Databases (VLDB), August 2005.

[ADS02] J. Aspnes, Z. Diamadi, and G. Shah. Fault-tolerant Routing in
Peer-to-Peer Systems. In Proceedings of the 21th Annual Sym-
posium on Principles of Distributed Computing, Pages 223–232.
ACM Press, 2002.

[Ald03] D. Aldous. A Stochastic Complex Network Model. Electronic Re-
search Announcements of the Ammerican Mathematical Society,
9:152–161, 2003.

[ALH02] L. A. Adamic, R. M. Lukose, and B. A. Huberman. Handbook of
Graphs and Networks: From the Genome to the Internet, Chapter
Local Search in Unstructured Networks. Wiley, Berlin, 2002.

[ALPH01] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman.
Search in power-law networks. Physical Review E, 64(046135),
2001.

[AS03] J. Aspnes and G. Shah. Skip Graphs. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, Bal-
timore, MD, USA, 12–14 2003.

[ATS04] S. Androutselis-Theotokis and D. Spinellis. A Survey of Peer-
to-Peer Content Distribution Technologies. ACM Computing Sur-
veys, 36(4):335–371, 2004.

[BB03] A. Barabasi and E. Bonabeau. Scale-Free Networks. Scientific
American, 288(5):60–69, 2003.

[BDET00] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of
a serverless distributed file system deployed on an existing set of
desktop PCs. In Proceedings of the 2000 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer
Systems, Pages 34–43. ACM Press, 2000.

[BMC+03] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar, and S. E.
Fienberg. Adaptive Name Matching in Information Integration.
IEEE Intelligent Systems, 18(5):16–23, 2003.

[BMM02] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A Framework
for the Development of Agent-Based Peer-to-Peer Systems. In
Proceedings of the 22th International Conference on Distributed
Computing Systems, July 2002.

Deliverable D4.1 Version 1.1 40

NEPOMUK 28.12.2006

[BMT+05] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer.
MINERVA: Collaborative P2P Search. In VLDB, Pages 1263–1266,
2005.

[BMWZ05] M. Bender, S. Michel, G. Weikum, and C. Zimmer. The MINERVA
Project: Database Selection in the Context of P2P Search. In
BTW, Pages 125–144, 2005.

[BSS02] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact, Adap-
tive Placement Schemes for Non-Uniform Requirements. In Pro-
ceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, Pages 53–62. ACM Press, 2002.

[CDG+02] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.
Security for structured peer-to-peer overlay networks. In Fifth
Symposium on Operating Systems Design and Implementation
(OSDI’02), December 2002.

[CF04] C. Cramer and T. Fuhrmann. On the fundamental communication
abstraction supplied by P2P overlay networks. European Transac-
tions on Telecommunications, December 2004.

[CSWH00] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System.
In ICSI Workshop on Design Issues in Anonymity and Unobserv-
ability, 2000.

[Dat02] M. Datar. Butterflies and Peer-to-Peer Networks. In Proceedings
of ESA 2002 (LNCS), June 2002.

[DGM02] N. Daswani and H. Garcia-Molina. Query-Flood DoS Attacks in
Gnutella. In Proceedings of the ACM Transactions on Information
Systems (TOIS ’02), 2002.

[DH05] X. Dong and A. Y. Halevy. Malleable Schemas: A Preliminary
Report. In WebDB, Pages 139–144, 2005.

[DHM05] X. Dong, A. Y. Halevy, and J. Madhavan. Reference Reconciliation
in Complex Information Spaces. In SIGMOD Conference, Pages
85–96, 2005.

[DKK+01] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles, Pages
202–215. ACM Press, 2001.

[DMS04] V. Darlagiannis, A. Mauthe, and R. Steinmetz. Overlay De-
sign Mechanisms for Heterogeneous, Large Scale, Dynamic
P2P Systems. Journal of Networks and System Management,
12(3):371–395, 2004.

[DMS05] V. Darlagiannis, A. Mauthe, and R. Steinmetz. Optimizing Overlay
Network Stability using Burn-In Methods. Submitted for publica-
tion, March 2005.

[eDo05] eDonkey2000. http://www.edonkey2000.com, 2005.

[FG03] P. Fraigniaud and P. Gauron. The Content-Addressable Network
D2B. Technical Report 1349, LRI, Univ. Paris-Sud, Paris, France,
January 2003.

[FM03] M. J. Freedman and D. Maziéres. Sloppy Hashing and Self-Orga-
nizing Clusters. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS03), Berkeley, CA, February 2003.

Deliverable D4.1 Version 1.1 41

NEPOMUK 28.12.2006

[FV02] M. J. Freedman and R. Vingralek. Efficient Peer-to-Peer Lookup
Based on a Distributed Trie. In Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS02), Cambridge,
MA, March 2002.

[GBL+03] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Ke-
lips: Building an Efficient and Stable P2P DHT Through Increased
Memory and Background Overhead. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS03), Febru-
ary 2003.

[GNO+04] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and
M. Winslett. No Registration Needed: How to Use Declarative
Policies and Negotiation to Access Sensitive Resources on the Se-
mantic Web. In 1st European Semantic Web Symposium (ESWS
2004), 2004.

[Gnu05a] Gnutella. http://www.gnutella.com, 2005.

[Gnu05b] Gnutella 2. http://www.gnutella2.com, 2005.

[HAY+05] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell.
A Survey of Peer-to-Peer Storage Techniques for Distributed File
Systems. In Proceedings of the IEEE International Conference on
Information Technology (ITCC), April 2005.

[HJS+03] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
SkipNet: A Scalable Overlay Network with Practical Locality Prop-
erties. In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03), March 2003.

[HK03] K. Hildrum and J. Kubiatowicz. Asymptotically Efficient Ap-
proaches to Fault-Tolerance in Peer-to-Peer Networks. In Proceed-
ings of 17th International Symposium on Distributed Computing,
October 2003.

[HKRZ02] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed
Object Location in a Dynamic Network. In Proceedings of the
fourteenth annual ACM symposium on Parallel algorithms and ar-
chitectures, Pages 41–52. ACM Press, 2002.

[HMKR04] M. Hollick, I. Martinovic, T. Krop, and I. Rimac. A Survey on
Dependable Routing in Sensor Networks, Ad hoc Networks, and
Cellular Networks. In Proceedings of the 30th EUROMICRO Con-
ference, Pages 495–502. IEEE Computer Society Press, Los Alami-
tos, September 2004.

[Hol04] M. Hollick. Dependable Routing for Cellular and Ad hoc Networks.
PhD Thesis, Department of Electrical Engineering and Information
Technology, Technische Universität Darmstadt, Germany, Decem-
ber 2004.

[HSSS04] M. Hollick, J. Schmitt, C. Seipl, and R. Steinmetz. On the Effect of
Node Misbehavior in Ad Hoc Networks. In Proceedings of IEEE In-
ternational Conference on Communications, ICC’04, Paris, France,
volume 6, Pages 3759–3763. IEEE, June 2004.

[ITU94] T. S. S. ITU. Terms and Definitions related to Quality of Service
and Network Performance including Dependability. Technical Re-
port ITU-T Recommendation E.800, August 1994.

[JP03] S. Jagannathan and G. Pandurangan. Stochastic Analysis of a
Fault-Tolerant and Bandwidth-Efficient P2P Network. Technical
Report TR-03-029, Purdue University, 2003.

Deliverable D4.1 Version 1.1 42

NEPOMUK 28.12.2006

[Kab01] M. Kabanov. In Defense of Gnutella. Online-Artikel,
http://www.gnutellameter.com/gnutella-editor.html, 2001.

[KK03] F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal
Hash Table. In Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS03), February 2003.

[Kle99] J. Kleinberg. The small-world phenomenon: An algorithmic per-
spective. Cornell Computer Science Technical Report, 1776(99),
1999.

[KLL+97] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, Pages 654–663. ACM Press, 1997.

[KWX01] B. Krishnamurthy, J. Wang, and Y. Xie. Early Measurements of
a Cluster-based Architecture for P2P Systems. In Proceedings
of the First ACM SIGCOMM Workshop on Internet Measurement
Workshop, Pages 105–109. ACM Press, 2001.

[LBK02] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Observations
on the Dynamic Evolution of Peer-to-Peer Networks. In Proceed-
ings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS02), 2002.

[LCP+04] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey
and Comparison of Peer-to-Peer Overlay Network Schemes. IEEE
Communications Survey and Tutorial, March 2004.

[LN97] W. Litwin and M.-A. Neimat. LS*S: A High-Availability and High-
-Security Scalable Distributed Data Structure. In Proceedings of
Research Issues in Data Engineering (RIDE), 1997.

[LNBK02] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
evolution of peer-to-peer systems. In Proceedings of the 21th
Annual Symposium on Principles of Distributed Computing, Pages
233–242. ACM Press, 2002.

[LNS96] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH*?a scalable, dis-
tributed data structure. ACM Transactions on Database Systems
(TODS), 21(4):480–525, 1996.

[LRS02] Q. Lv, S. Ratnasamy, and S. Shenker. Can Heterogeneity Make
Gnutella Scalable? In Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS02), March 2002.

[LRW03] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the
KaZaa Network. In 3rd IEEE Workshop on Internet Applications
(WIAPP’03), June 2003.

[MAC04] K. S. Mikael Akerholm, Johan Fredriksson and I. Crnkovic. Qual-
ity Attribute Support in a Component Technology for Vehicular
Software. In Proceedings of the Fourth Conference on Software
Engineering Research and Practice in Sweden, October 2004.

[MCN06] E. Minkov, W. W. Cohen, and A. Y. Ng. Contextual search and
name disambiguation in email using graphs. In SIGIR, Pages
27–34, 2006.

[MM02] P. Maymounkov and D. Maziéres. Kademlia: A Peer-to-peer Infor-
mation System Based on the XOR metric. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems (IPTPS02),
2002.

Deliverable D4.1 Version 1.1 43

NEPOMUK 28.12.2006

[MNR02] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a Scalable and
Dynamic Emulation of the Butterfly. In Proceedings of the 21th
Annual Symposium on Principles of Distributed Computing, Pages
183–192. ACM Press, 2002.

[MS03] J. Mischke and B. Stiller. Peer-to-Peer Overlay Network Manage-
ment Through AGILE. In Kluwer Academic Publishers, IFIP/IEEE
International Symposium on Integrated Network Management
(IM), March 2003.

[MTG03] H. D. Meer, K. Tutschku, and P. T. Gia. Dynamic Operation of Peer-
to-Peer Overlay Networks. Praxis der Informationsverarbeitung
und Kommunication (PIK), 2003(2):65–73, 2003.

[Nap05] Napster. http://www.napster.com, 2005.

[Neu94] B. C. Neuman. Readings in Distributed Computing Systems, Chap-
ter Scale in Distributed Systems, Pages 463–489. IEEE Computer
Society Press, 1994.

[NG01] W. H. Nicholas Gibbins. Scalability Issues for Query Routing Ser-
vice Discovery. In Proceedings of the Second Workshop on Infras-
tructure for Agents, MAS and Scalable MAS at the Fourth Inter-
national Conference on Autonomous Agents (ICMAS2001), Pages
209–217, 2001.

[NOW04] W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: Automated
Trust Negotiation for Peers on the Semantic Web. In Secure Data
Management, Pages 118–132, 2004.

[NS03] M. Nilsson and W. Siberski. RDF Query Exchange Lan-
guage (QEL) - Concepts, Semantics and RDF Syntax.
http://edutella.jxta.org/spec/qel.html, 2003.

[NWQ+02] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nils-
son, M. Palmer, and T. Risch. Edutella: A P2P Networking In-
frastructure Based on RDF. In Proceedings of WWW 2002, May
2002.

[Ora01] A. Oram. Harnessing the Power of Disuptive Technologies.
O’Reilly, Sebastopol, CA, 2001.

[Ove05] Overnet. http://www.overnet.com, 2005.

[PRR97] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. In
Proceedings of the ninth annual ACM symposium on Parallel algo-
rithms and architectures, Pages 311–320. ACM Press, 1997.

[PSAS01] M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne. The
cost of peer discovery and searching in the Gnutella peer-to-peer
file sharing protocol. In Proceedings of the International Confer-
ence on Networks, Pages 263–268, 2001.

[Pug90] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[RD01a] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), Pages 329–350, 2001.

[RD01b] A. I. T. Rowstron and P. Druschel. Storage Management and
Caching in PAST, A Large-scale, Persistent Peer-to-peer Storage
Utility. In Symposium on Operating Systems Principles, Pages
188–201, 2001.

Deliverable D4.1 Version 1.1 44

NEPOMUK 28.12.2006

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker.
A scalable Content Addressable Network. In Proceedings of the
2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Pages 161–172.
ACM Press, 2001.

[RH02] W. J. Reed and B. D. Hughes. From gene families and genera to
incomes and internet file sizes: Why power laws are so common
in nature. Physical Review E, 66(067103), December 2002.

[Rit01] J. Ritter. Why Gnutella Can’t Scale - No, Really. Online-Article,
http://www.darkridge.com/jpr5/doc/gnutella.html, 2001.

[RKP02] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne. Finding Good
Peers in the Peer-to-Peer Networks. In Proceedings of Interna-
tional Parallel and Distributed Computing Symposium (IPDPS),
April 2002.

[SCKH04] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Orga-
nization, development and function of complex brain networks.
Trends in Cognitive Sciences, 8(9):418–425, 2004.

[SGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Proceedings of
Multimedia Computing and Networking 2002 (MMCN ’02), 2002.

[SM02] E. Sit and R. Morris. Security Considerations for Peer-to-Peer Dis-
tributed Hash Tables. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS02), Cambridge, MA,
March 2002.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable Peer-to-Peer Lookup Service for Internet
Applications. In Proceedings of the 2001 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communications, Pages 149–160. ACM Press, 2001.

[SMLN+03] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable Peer-to-Peer
Lookup Service for Internet Applications. IEEE Transactions on
Networking, 11(1):17–32, February 2003.

[SMZ02] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Lo-
cation and Retrieval in Peer-to-Peer Systems by Exploiting Locality
in Interests. ACM SIGCOMM Computer Communication Review,
32(1):80–80, 2002.

[SP03] J. Shneidman and D. Parkes. Rationality and Self-Interest in Peer
to Peer Networks. In Proceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS03), February 2003.

[SSDN02] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP -
Hypercubes, Ontologies and P2P Networks. In Proceedings of the
Agents and Peer-to-Peer Systems, July 2002.

[SW04] S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across
Large Networks. IEEE/ACM Transactions on Networking,
12(2):219–232, April 2004.

[TN97] P. Triantafillou and C. Neilson. Overlay Design Mechanisms for
Heterogeneous, Large Scale, Dynamic P2P Systems. IEEE Trans-
action in Software Engineering, 23(1):35–55, January 1997.

Deliverable D4.1 Version 1.1 45

NEPOMUK 28.12.2006

[TXM02] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information Re-
trieval in Structured Overlays. In Proceedings of the 1st Workshop
on Hot Topics in Networks (HotNets-I), October 2002.

[WC03] X. F. Wang and G. Chen. Complex networks: Small-World,
Scale-Free and Beyond. IEEE Circuits and Systems Magazine,
3(1):6–20, 2003.

[ZHS+04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for Ser-
vice Deployment. IEEE Journal on Selected Areas in Communica-
tions, 22(1):41–53, 2004.

Deliverable D4.1 Version 1.1 46

	Introduction
	Requirements
	Use Cases and Case Study Scenarios
	Questionnaire
	P2P Scenarios

	Functional Requirements
	Search
	Data manipulation
	Access Control and Data Encryption
	Additional P2P Requirements

	Non-functional Requirements
	Scalability and Expandability
	Availability, Reliability and Fault-tolerance
	Security
	Persistence, Consistency & Integrity of Index
	Load-balance, Fairness and Heterogeneity
	Autonomy
	Constraint Requirements and Trade-offs

	State-of-the-Art
	Unstructured overlay networks
	Gnutella and power-law networks
	Freenet
	Edutella

	Structured overlay networks
	Chord
	CAN
	Pastry
	Minerva
	Further Approaches

	Summary

	Distributed Search Component
	Component specification
	Relations with other Components
	P-Grid
	Concepts
	Search in P-Grid
	Architecture
	Implementation

	Evaluation
	Experimental setup
	Experimental results
	Discussion and Future Work

	Social Extensions
	Distributed Storage
	Security
	Heterogeneous Metadata

	Conclusions

