

First version Backbone and
Connector Infrastructure

Deliverable D6.1

Version 1.0
08.11.2006
Dissemination level: PU

Nature Other
Due date 30.09.2006
Lead contractor NUIG
Start date of project 01.01.2006
Duration 36 months

Integrated Project

Priority 2.4.7

Semantic based knowledge systems

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 ii

Authors

Tudor Groza, NUIG
Leo Sauermann, DFKI
Paul – Alexandru Chirita, L3S

Mentors

Prof. Dr. Manfred Hauswirth, NUIG
Prof. Dr. Harald C. Gall, UNIVERSITÄT ZÜRICH, INSTITUT FÜR INFORMATIK, ZÜRICH

Contributions

Dr. Siegfried Handschuh, NUIG
Knud Möller, NUIG
Dr. Gerald Reif, UNIVERSITÄT ZÜRICH, INSTITUT FÜR INFORMATIK, ZÜRICH
Pat Croke, HPGL
Aine Leddy, HEWLETT PACKARD GALWAY LTD
Michael Sintek,DFKI
Gunnar Grimnes, DFKI
Raluca Paiu, FZI
Stefania Costache, L3S

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Erwin-Schroedinger-Strasse (Building 57)
D 67663 Kaiserslautern
Germany
Email: bernardi@dfki.uni-kl.de, phone: +49 631 205 3582, fax: +49 631 205 4910

Partners

DEUTSCHES FORSCHUNGSZENTRUM FUER KUENSTLICHE INTELLIGENZ GMBH (DFKI)
IBM IRELAND PRODUCT DISTRIBUTION LIMITED (IBM)
SAP AG (SAP)
HEWLETT PACKARD GALWAY LTD (HPGL)
THALES S.A. (TRT)
PRC GROUP - THE MANAGEMENT HOUSE S.A. (PRC)
EDGE-IT S.A.R.L (EDG)
COGNIUM SYSTEMS S.A. (COG)
NATIONAL UNIVERSITY OF IRELAND, GALWAY (NTUA)
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE (FZI)
UNIVERSITAET HANNOVER (L3S)
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS (ICCS)
KUNGLIGA TEKNISKA HOEGSKOLAN (KTH)
UNIVERSITA DELLA SVIZZERA ITALIANA (USI)
IRION MANAGEMENT CONSULTING GMBH (IMC)

Copyright: NEPOMUK Consortium 2006
Copyright on template: Irion Management Consulting GmbH 2006Revision chart and history log

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 iii

Versions

Version Date Reason

0.1 24.05.2006 First draft

0.2 31.7.2006 Some text by leo

0.21 03.08.2006 Re-arrangement – Tudor

0.3 15.08.2006 Added content – Tudor

0.3 16.08.2006 Added content – Leo & Tudor

0.3.1 11.09.2006 Added content – Raluca & Stefania

0.4 13.09.2006 Added content and re-arrangements – Paul

0.4.3 25.09.2006 Refinements: Leo, Paul, Raluca, Tudor

0.5 27.09.2006 Changed template and further refinements – all

0.5.1 01.10.2006 Added content, refined content – Tudor, Paul, Siggi, Leo

0.6 20.10.2006 Added content (revised the Backbone chapter) – Tudor

0.7 29.10.2006 Rewritten Implementation. Refinement and addition of
transition and explanation text. Executive Summary,
Conclusion – Siggi

0.8 2.11.2006 New Introduction/Motivation, Adding of design rational into
Nepomuk architecture – Siggi

Nepomuk backbone APIs in Appendix - Tudor

1.0 08.11.2006 Released as final after final review/further smaller
corrections; layout streamlined by IMC

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 iv

Executive Summary

The objective of this deliverable is to document a first starting point of
the NEPOMUK architecture as well as the first prototype of the backbone
and connector infrastructure. The pre-condition for the architecture is
that it should lead to a basis for standardization efforts.

In order to achieve this, we applied the following methodical steps:

• We defined the terminology and investigated the technological
background necessary for the envisioned Service-Oriented
Architecture (SOA) of the NEPOMUK system.

• We reviewed the state-of-the art for Semantic Desktop
implementations with respect of the underlying architectural
principles.

• We identified the need for a NEPOMUK specific software
engineering lifecycle, starting with a bottom-up approach.

• We designed the NEPOMUK backbone and connector
infrastructure in a way that supports a later standardization of
the architecture, by imposing a language and component neutral
API and framework on the components and their communication.
The design follows the principle of abstraction, but foresees
dedicated efficient native implementation as well as federations
for cross-platform scenarios.

The work resulted in the following:

• A starting point NEPOMUK architecture, which describes a first
harmonized view on the early software services and components

• A backbone and connector infrastructure framework and API.

• Implementations of the backbone and connector infrastructure in
the form of libraries. Firstly, a reference architecture using
platform neutral web services infrastructure. Secondly, native
implementations for specific platforms.

In conclusion, we have a first version of the connector and backbone
infrastructure which enables and facilitates the integration of the various
services using open semantic web standards.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 v

Table of contents

1. Introduction.. 1
2. Requirements and Objectives ... 3
3. Technology Overview .. 5

3.1. Terminology... 5
3.2. Web Services ... 5
3.3. The Service Oriented Architecture (SOA) 6

3.3.1. SOA and Web Service protocols.. 7
3.3.2. Analysis of platforms for Web Services 8

3.4. Inter-Process Communication Infrastructures...............................10
4. Related Research Activities..13

4.1. Research Oriented Systems..13
4.2. Open Source Community Software..15
4.3. Other Systems ..18
4.4. Conclusions...20

5. NEPOMUK Architecture ...21
5.1. Architecture and Components...21

5.1.1. Design Rationale ..22
5.1.2. Components and Services ...24

6. Backbone and connector infrastructure ..27
6.1. Defining the problem ...27
6.2. NEPOMUK Backbone architecture..29

6.2.1. Backbone components..29
6.2.2. Backbone federation...30
6.2.3. NEPOMUK Services...32
6.2.4. NEPOMUK Registry...32
6.2.5. Inter-component communication33

6.3. Scenario revisited ..35
7. Backbone and Connector infrastructure Implementation37
8. Discussion and Conclusions ...39
References ...41
Annex A – NEPOMUK Registry API..43
Annex B – NEPOMUK Backbone Library API...44

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 1

1. Introduction

In traditional desktop architectures, applications are isolated islands of
data - each application has its own data, unaware of related and relavant
data in other applications. Individual vendors may decide to allow their
applications to interoperate, so that e.g. the email client knows about the
address book. However, today there is no consistent approach for
allowing interoperation and a system-wide exchange of data between
applications. In a similar way, the desktops of different users are also
isolated islands - there is no standardized architecture for interoperation
and data exchange between desktops. Users may exchange data by
sending emails or upload it to a server, but so far there is no way of
seamless communication from an application used by one person on their
desktop to an application used by another person on another desktop.

The problem on the desktop is similar to that on the Web. On the
Web we are faced with isolated data islands, and also at the desktop
there is not yet a standardized approach for finding and interacting
between applications (viz. "Web Services"). The Social Semantic
Desktop paradigm adopts the ideas of the Semantic Web paradigm
[BernersLee2001], which offers a solution for the web. Formal ontologies
capture both a shared conceptualization of desktop data and personal
mental models. RDF (Resource Description Format)1 serves as a common
data representation format. Web Services - applications on the web - can
describe their capabilities and interfaces in a standardized way and thus
become Semantic Web Services. On the desktop, applications (or
rather: their interfaces) will therefore modeled in a similar fashion.
Together, these technologies provide a means to build the semantic
bridges necessary for data exchange and application integration. The
Social Semantic Desktop will transform the conventional desktop into a
seamless, networked working environment, by loosening the borders
between individual applications and the physical workspace of different
users.

The aim of the NEPOMUK project is to provide a standardized description
of a Semantic Desktop architecture, independent of any particular
operating system or programming language. Reference implementations
will show the feasibility of the standard. This deliverable describes in
detail the so-called NEPOMUK backbone and connector infrastructure (or
"backbone", for short). The backbone is the central piece of the
NEPOMUK architecture. Considering the complete architecture as a set of
services, the backbone's main responsibility is the publishing, discovering
and invoking of each of these services. To elaborate on this and
introduce a central concept in the design of NEPOMUK, we use the
Service-Oriented Architecture (SOA) paradigm (see Section 3.3.).

While one pillar of the design of NEPOMUK is a clear architectural vision –
data integration on the basis of RDF and ontologies, and the integration
of application functionality in the form of a Web Service-like Service-
Oriented Architecture –, another pillar are the already existing software
components coming into the project from the various project partners.

1 http://www.w3.org/RDF

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 2

This deliverable has therefore two important aspects. The first is a
precise definition of the theoretical approach and grounding in proven
technologies, while the second aspect is the generation of a harmonized
integration of existing components in a starting point architecture. Over
the course of the project, these two aspects will move closer and closer
and eventually merge.

The deliverable is structured as follows: We start by outlining the
requirements and objectives for designing a Social Semantic Desktop
architecture in Section 2 and then in Section 3 continue with a thorough
survey of existing technologies that we deem relevant for the design of
the backbone. Then, in Section 4, we present other work aimed at
developing a Semantic Desktop or similar systems. Section 5 introduces
the concrete NEPOMUK architecture and details the role of the major
types of the components present in it. Following, in Section 6 we focus
on the actual realization of the NEPOMUK backbone and connector
infrastructure by detailing a possible communication scenario on the
desktop, describing the layered organization of the backbone, the inter-
component communication and the NEPOMUK Registry. Furthermore, in
Section 7, the deliverable shows how the prototypical implementation
was developed and ends by stating our conclusions and future directions
in Section 8.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 3

2. Requirements and Objectives

In the following we shortly sketch the requirements and objectives of the
Social Semantic Desktop to motivate the architecture and the backbone
presented in this deliverable.

The starting point architecture of NEPOMUK (presented in Section 5)
is the result of a reengineering process follows the design rationale and
motivation which we aim to present here. The general idea of the Social
Semantic Desktop is a wide use of Semantic Web technologies on
personal computers. The use of ontologies, metadata annotations, and
semantic web protocols on the desktop will allow the integration of
desktop applications and the web, enabling a much more focused and
integrated personal information management as well as focused
information distribution and collaboration on the Web beyond sending
emails. The goal is an open personal information management system
and collaborative infrastructure based on Semantic Web technologies,
built into current operating systems.

The Components of the Social Semantic Desktop can be classified in
three areas: i) Personal Information Management, ii) Distributed
Information Management, iii) Social Networks and Community Services.

The focal point of the initial architecture of NEPOMUK is Personal
Information Management. However, some distributed and social aspects
are integrated already now. In detail we see the following basic
requirements for the semantic personal information management:

• Knowledge Articulation and Visualization. A means for
articulation and visualization of structured information is needed.
This is crucial both for presenting semantic data to the user, as
well as for providing an editing environment for such data.

• Standard Desktop Classification Structures. The system
has to provide a set of Standard vocabularies and ontologies for
personal information management, which allows the user to
structure and classify his everyday information. Examples are
calendar data or task management. These ontologies are not
static and form the basis for extension.

• Mapping and Aligning of Information Schemes.
Information from similar domains might be expressed by
different schemes (i.e. ontologies). While this is already true on
the single desktop this problems gets bigger in a distributed
environment. Hence, a Semantic Desktop needs means to align
and map ontologies.

• Wrapping of Legacy Information. Current desktops contain a
lot of both structured and unstructured data, which needs to be
transformed into a standardised semantic representation (e.g.
RDF/S). For structured data (e.g. existing file system metadata,
email metadata), the transformation process will mean a
mapping from one structured format to another. For
unstructured data (mainly textual data such as emails or PDF
documents), transformation will mean the application of
Information Extraction and Language Processing technologies.
This will enable interoperable applications using this information.

• Metadata Storage and Querying. The desktop information
and the associated metadata and ontologies needs to be stored
in a central place and to be made queryable.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 4

• Linking of Data Items and Relational Metadata. Related
information might be spread on the desktop. Hence, there must
be support to link arbitrary information on the local desktop,
across different media types, file formats, and applications.
Semantic web data structures and techniques will be applied and
adapted to achieve this goal.

• Social Aspects. Means for social relation building and
knowledge exchange which support knowledge sharing within
social communities. These means will provide semantically rich
recommendations, which allow members of a community to not
only exchange documents and other isolated information chunks,
but all relevant information about their context and the
participating community as well.

• Open Architecture. The Social Semantic Desktop has an open
framework architecture with clearly defined interfaces which are
published and possibly submitted for standardization. This will
allow external adopters to integrate their proprietary desktop
tools into the framework and offers ways for commercial support
and extension activities. We aim to reach early dissemination of
project results and to interact with the open-source developer
community. This will allow for the gathering and inclusion of
feedback and development contributions form interested third
parties.

Section 5 shows how these requirements can be mapped to the various
components of the NEPOMUK starting point architecture.

To tackle the requirement of an open architecture we aim for a Services
Oriented Architecture (SOA). We further aim to ensure language and
platform independence, and thus the publication of the implemented
middleware as open-source software. Also, in the relevant cases, we
intend to submit our results into a group review process of the NEPOMUK
consortium.

The following Section 3 gives an overview of the underlying technology
of a Service Oriented Architecture.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 5

3. Technology Overview

This section introduces some of the technologies that will be used across
this deliverable. We start by describing shortly the concepts behind the
NEPOMUK backbone and connector infrastructure, and then we present a
brief overview of the web services (WS) technologies, including the
service oriented architecture (SOA) paradigm, and a particular Java
alternative, i.e. the OSGi service platform. Finally, we discuss other
technologies that we investigated for the inter-process communication
across the NEPOMUK architecture.

3.1. Terminology

The NEPOMUK architecture represents a set of standardized, neutral
and platform-independent services provided by the NEPOMUK
framework, without including particular descriptions for a specific service.
Specific services are realized through conformance to the NEPOMUK
standard. For example: PIMO service – a Personal Information Model
Ontology Service or Context Manager Service (see Section 5 for more
details).

The backbone and connector infrastructure, supporting the
NEPOMUK architecture, enables and facilitates the integration of different
services providing the means for communication and interaction, and
establishing a standard communication protocol. It takes care of the
following processes:

• service publishing (and therefore registry)

• service discovery and match-making

• service invocation

While writing this deliverable we noticed that “middleware2” is also an
appropriate term for that what we call “backbone and connector” infra-
structure, since middleware denotes software that connects software
components or applications. However, since all documentation and com-
munication in the project so far is referring to ”the backbone” we decided
to stick to this name for the moment being.

3.2. Web Services

A Web Service represents a software application identified by a URI,
whose interfaces and bindings are capable of being defined, described
and discovered by XML artifacts and furthermore the Web Service sup-
ports direct interactions with other software applications using XML based
messages via an Internet-based protocol.

2 http://en.wikipedia.org/wiki/Middleware

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 6

3.3. The Service Oriented Architecture (SOA)

In Section 2 we argued that a Service Oriented Architecture is the
appropriate mean to ensure the requirement of an open architecture
for NEPOMUK. In the following we will introduce what SOA is and
present a thorough survey of existing SOA related technologies such as
WSDL, SOAP, UDDI, REST, OSGi. The investigation on these technologies
has been important for us to fully understand the possibilities and to
decide on a proper design for the backbone (see Section 6).

Overview. Service-Oriented Architecture (SOA) expresses a perspective
of software architecture that defines the use of services to support the
requirements of software users. In an SOA environment, resources on a
network are made available as independent services that can be
accessed without knowledge of their underlying platform implementation.
3

Figure 1. The Service Oriented Architecture

SOA represents a style of architecture, usually based on Web Services
standards (e.g. SOAP – Simple Object Access Protocol or REST –
Representational State Transfer) enabling the design of applications that
combine loosely-coupled and interoperable services. A service is a unit of
work published by a service provider, which is meant to produce results
for a service consumer. The interoperation between the provider and
consumer is based on a formal definition (or contract, e.g. WSDL – Web
Services Description Language) independent of the programming
language and underlying platform. Thus, the contract hides the
implementation details, providing a method for different services
implemented in different programming languages to be consumed by a
common composite application.

The Service Broker is an optional component, depending on the
architecture definition. Usually it is represented by a registry (e.g. UDDI –

3 Wikipedia Contributors, ‚“Service Oriented Architecture“, Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/Service-oriented_architecture (accessed August
21 2006)

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 7

Universal Description, Discovery and Integration) having a known
interface with the role of providing the means for the publishing and the
discovery of services. In other words, the registry is a container for
published contracts which can be inquired by potential service
consumers.

3.3.1. SOA and Web Service protocols

3.3.1.1 WSDL, SOAP, UDDI family

Web Services Description Language (WSDL). WSDL is an XML
format for describing network services as a set of endpoints operating on
messages containing either document-oriented or procedure-oriented
information. The operations and messages are described abstractly, and
then bound to a concrete network protocol and message format to define
an endpoint. Related concrete endpoints are combined into abstract
endpoints (services). WSDL is extensible to allow description of endpoints
and their messages regardless of what message formats or network
protocols are used to communicate. [Christensen2001]

Simple Object Access Protocol (SOAP). SOAP is a lightweight
protocol intended for exchanging structured information in a
decentralized, distributed environment. It uses XML technologies to
define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols.
The framework has been designed to be independent of any particular
programming model and other implementation specific semantics.

Two major design goals for SOAP are simplicity and extensibility. SOAP
attempts to meet these goals by omitting, from the messaging
framework, features that are often found in distributed systems. Such
features include but are not limited to: reliability, security, correlation,
routing and Message Exchange Patterns (MEPs). [Gudgin2003]

Universal Description, Discovery and Integration (UDDI). The
UDDI protocol is a central element of the group of related standards
which comprises the Web Services stack. The UDDI specification defines
a standard method for publishing and discovering the network-based
software components of a service-oriented architecture (SOA). Its
development is led by the OASIS consortium of enterprise software
vendors and customers. [Oasis2004]

The functional purpose of a UDDI registry is the representation of data
about services. It was designed to offer several benefits as part of a
vision in which service-based applications would be linked through a
public or private dynamic brokerage system. These benefits would
increase the code re-use and improve the infrastructure management by:

• publishing information about Web Services

• inquiring about Web Services based on a certain criterion

• determining the security and transport protocols supported by a
given Web Service

The directory usually contains the contracts published by the services’
providers as WSDL descriptions. These define the protocol bindings and
the required message formats in order to interact with that service
provider. The inquiry is realized by an exchange of SOAP messages.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 8

3.3.1.2 REST – Representational State Transfer

Representational State Transfer (REST) is a software architecture style
for distributed hypermedia systems. It was first described in the doctoral
thesis of Roy Fielding [Fielding2000], and has quickly passed into
widespread use in the networking community.

The core idea is to use the existing parts of HTTP to describe services
rather than to use a more detailed framework on top, like SOAP. The
application state and the functionality are divided into resources, each
resource being identified by its URI. The existing HTTP methods POST,
GET, PUT, and DELETE can then be used to access or manipulate the
resource.

Using REST, setting a list of participants of an event may result in an
operation such as:

• Use the HTTP PUT method …

• … on the URI http://example.com/event/200/participants.

• PUT the list of participants using a defined XML syntax.

In contrast to SOAP and WSDL, REST does not enforce a formal
description of the services.

3.3.1.3 The OSGi Service Platform

OSGi (Open Services Gateway initiative) technology is a dynamic module
system for Java. The OSGi Service Platform provides functionality to Java
that makes Java a good environment for software integration and thus
for development. Java provides the portability that is required to support
products on many different platforms. The OSGi technology provides the
standardized primitives that allow applications to be constructed from
small, reusable and collaborative components. These components can be
composed into an application and deployed.

The OSGi Service Platform provides the functions needed to dynamically
change the service composition on a variety of devices and networks,
without requiring restarts. To minimize, as well as to manage coupling,
the OSGi technology provides a service-oriented architecture that enables
these components to dynamically discover each other for collaboration.
The OSGi Alliance has developed many standard component interfaces
for common functions such as: HTTP service configuration, logging,
security or user administration. Pluggable implementations of these
components can be obtained from different vendors, which feature
different optimizations and costs. However, service interfaces can also be
developed on a proprietary basis. (See also [OSGI2006])

3.3.2. Analysis of platforms for Web Services

3.3.2.1 Web Services and OSGi

OSGI provides a platform that is similar to the intended backbone, but
does not match the service-oriented paradigm exactly. The following
table shows the main differences and similarities.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 9

 Web Services OSGi

Technology
Language/technology
independent Java world only

Components
A single component is an
individual application
(individual process)

A single component is a .jar
or .zip file containing OSGi-
specific meta-information

Services

A single service is an HTTP
application exposing some
functionalities through a
protocol respecting a
service contract defined in
WSDL

A single service is a Java
object implementing a Java
interface defining the
contract of this service

Communication
between

components

Defines how applications
(independent processes)
can communicate with each
other. Does not specify the
internal structure of
individual applications

Does not specify inter-
process communication.
Defines communication
between components inside
one process.

Life-cycle of
components

Does not control the life-
cycle of applications (SOA
components)

Defines and controls the
whole life-cycle of bundles
(OSGi components) - how
they can be installed,
activated, deactivated and
removed

Consuming /
providing
services

One SOA component
(application) can expose
and use many different web
services

One OSGi-bundle (OSGi-
component) can expose/use
many different java objects
which are registered as
services

Service
discovery

UDDI defines how a service
can be found by its WSDL
descriptor

OSGi defines how
components (services) can
be registered/discovered
based on java interfaces
and version numbers

3.3.2.2 Web Services and REST

For the envisioned HTTP based service architecture, two architectural
approaches are commonly used in industrial projects today, REST and
SOAP. In order to decide for one of them, we need to evaluate which
approach will provide a better foundation for the NEPOMUK standard.
Please note that a real comparison between REST and SOAP would not
be valid, firstly because REST is not a standard, and secondly, because
REST is an architectural style, while SOAP is a protocol. REST does not
define a formal protocol, but provides guidelines on how to build web
services in a simple, clear and clever way. On the other hand, the
triumvirate of SOAP, WSDL, and UDDI defines standards for
communication between services and service lookup, but the
programmers are completely free in defining their services.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 10

For NEPOMUK, the main requirement is an approach that lets us define
a standard. WSDL is a formal language that allows describing such a
standard. In theory, WSDL 2.0 can be used to describe REST
architectures, but this is not common practice and we could not verify
tool support for this approach, whereas using WSDL in combination with
SOAP allows automatic generation of client stubs and server skeletons for
various programming environments. Therefore, the standardization
requirement of NEPOMUK can be best met by using WSDL and SOAP in
combination, because this standard can be easily adopted by companies
and professional software developers.

This leads to the second requirement, namely tool support, which is
closely coupled to the first requirement. For SOAP, various
implementations exist and are used in industrial projects, for example to
expose company services for business-to-business communication. For
REST, also many implementations exist, especially in the Web 2.0
context. For REST services, clients to access these services are hand-
written based on the documentation provided by the service provider or
by the reverse engineering of the protocol. For popular services like
Amazon4 or Flickr5, this work was done by various open source projects.
So we see that time can be saved using SOAP and WSDL because clients
stubs and skeletons can be auto-generated. Once such REST clients for
various programming languages exist, the difference between SOAP and
REST is negligible.

A third requirement to the standard would be to fit the NEPOMUK
Architecture context. Some of the NEPOMUK services are usual RPC
method invocations, like the task management service (see Section 5).
Others, like the semantic wiki, are resource centered approaches, where
a REST architecture may help. Both are realizable using SOAP or REST
technologies.

As a result of this discussion, NEPOMUK will recommend the use of SOAP
and WSDL in their stable versions for developing and documenting the
majority of the NEPOMUK services. In parallel, for the RDF database
interfaces, we intend to analyze what would be the advantages of using
REST as communication mean.

3.4. Inter-Process Communication Infrastructures

Inter-Process Communication (IPC) happens when different applications
communicate on one computer. An application ends at its memory space.
For example a Java application calling a C-written DLL (Dynamic Linked
Library) is still an in-process invocation. Another application contacting a
database server via a pipe uses IPC for this. There are many examples of
standards that describe IPC protocols: DBUS, DCOP, KParts, Bonobo,
ActiveX, COM, D-COM, ActiveX, CORBA, RMI, plain pipes, shared
memory, files or HTTP. On Microsoft Platforms, COM is the quasi-
standard of IPC and found wide use in systems that are similar to

4 www.amazon.com
5 www.flickr.com

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 11

NEPOMUK. On Linux platforms, DBUS, KParts, and DCOP are popular
counterparts.

Application of Inter-Process Communication can range from simple
method calls (for example: open the system's web-browser) to more
complex invocations (create a new contact in the address book, set the
given name and family name).

In NEPOMUK, IPC happens between separate applications and services
running on a single desktop. For example, any graphical user interface
will use IPC to contact the NEPOMUK services.

Following, we will describe two of the most common approaches in more
detail, together with their relation with the NEPOMUK Architecture:

• DBus, representing one of the most commonly used
communication protocols on Linux platforms. The KDE
community is supporting the efforts of the NEPOMUK
consortium and will develop a KDE based prototype
following the NEPOMUK standards. One direct
consequence will be the integration between DBus and
the NEPOMUK Backbone.

• COM, the “de facto” communication protocol standard
on Windows platforms. We describe COM because, we
envision that the future NEPOMUK standard will provide
an unified support to semantically interconnect
applications, and thus could be considered as a viable
alternative even to the currently existing proprietary “de
facto” standards.

DBus. DBus is a protocol for desktop inter-process communication. It is
standardized under the umbrella of the freedesktop.org project. DBus
allows other programs to register themselves as services for others.
Clients can lookup existing services and send messages to these services.
DBus is implemented as a daemon process, opening a separate
communication channel for each participating user. Thus it provides a
communication mean between applications of one user, also on multi-
user platforms. It aims to replace DCOP [Brown2003] and Bonobo
[Gnome] for simple inter-process communication. Finally, although DBus
is platform and programming language independent, it is primarily useful
for the Linux platform.

COM. The Microsoft Standard COM (Component Object Model) is a
standard for inter-process-communication on the Microsoft Windows
operating system. COM allows an efficient way for object-oriented
communication across applications.

Applications can register as COM servers, publishing themselves to the
Windows registry using the regsrv32 application. The registry will list all
components by name, using a globally unique identifier (GUID) to avoid
problems between incompatible versions of the same service. Clients can
contact a COM server by calling operating system methods. The
communication is object-oriented, clients receive a handle on an object
and can call functions of it. The operating system will detect if the
requested service is running, if not, it will be started.

Functions can return complex objects and data types. Interfaces to COM
objects are described in “Type Libraries” (TBL files). Using these libraries,
clients can automatically generate code and interfaces to interact with
COM servers. All major programming languages include either such COM
clients or other commercially available clients.

There exist two extensions for COM:

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 12

• D-COM: allowing the invocation of methods in a distributed sce-
nario

• ActiveX: more convenient access to COM objects and the possi-
bility to include graphical components.

The bus-system implemented by COM contains listener/sender daemons
running in every COM-enabled application. COM is not a bus system, but
more a client-server method of connection, which is mediated by the
operating system.

COM is a major standard on the Windows platform, a multitude of ven-
dors sell their software components as COM services.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 13

4. Related Research Activities

This Section will review some of the most important research, open
source and industrial projects targeting similar functionalities as
NEPOMUK. We will start with the research oriented ones (i.e., Haystack,
SEMEX, and IRIS), as they are the most ambitious in terms of innovation,
then continue with the open source ones (i.e., Chandler, DeepaMehta
and Apogee), as they represent community efforts towards creating a
semantic desktop, and finally overview several other projects, including
industrial ones such as PHLAT.

4.1. Research Oriented Systems

Gnowsis. Gnowsis6 [Sauermann2006] is a semantic desktop with a
strong focus on extensibility and inte- gration. The goal of gnowsis is to
enhance existing desktop applications and the desktop operating system
with Semantic Web features. The primary use for such a system is
Personal Information Management (PIM), technically realized by
representing the user's data in RDF. The gnowsis pro ject was created
2003 in Leo Sauermann's diploma thesis and continued in the DFKI
research project EPOS7.

The Gnowsis architecture can be split into two parts, the gnowsis-server
which does all the data processing, storage and interaction with native
applications; and a graphical user interface (GUI) part. The interface
between the server and GUI is clearly specified, making it easy to
develop alternative interfaces.

Gnowsis uses a Service Oriented Architecture (SOA), where each
component defines a certain interface, after the server started the
component the interface is available as XML/RPC service, to be used by
other applications.

An important design goal of Gnowsis is to complement rather than
replace existing desktop applicaiton and data from external applications
like Microsoft Outlook or Mozilla Thunderbird are integrated via the
extraction framework Aperture8.

Haystack. The Haystack Project9 [Karger2005] is investigating
approaches for allowing people to manage their information in ways that
make the most sense to them. By removing arbitrary application-created
barriers, which handle only certain information “types” and relationships
as defined by the developer, Haystack aims to allowing users to define
their most effective arrangements and connections between views of
information. Such personalization of information management is meant
to improve everyone’s ability to find information located in the personal

6 http://www.gnowsis.org/
7 http://www3.dfki.uni-kl.de/epos
8 http://aperture.sourceforge.net/
9 http://haystack.csail.mit.edu/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 14

space. The Haystack architecture can be described in two distinct parts, a
Haystack Data Model (HDM) and a Haystack Service Model (HSM). The
Data Model is the means by which the user’s information space is
represented and the services append to or process the data in some
fashion. The abstract representation of the Haystack Data Model (HDM)
is that of a directed graph. The vertices and edges are typed and the
typing information provides semantic information about the structure.
With the HDM it is then possible to represent both the metadata
associations between objects (i.e. the URL of a document, the author of
a thesis, the date the picture was deleted), as well as the associations
between documents (i.e. all the documents that a paper is citing). The
set of functionalities within Haystack is implemented by objects in the
Haystack Service Model (HSM). Abstractly, Haystack can be viewed as
standard three-tiered architecture consisting of three different layers, a
user interface layer (the client), a server/service layer, and a database.

SEMEX. Another relevant personal information management tool is the
Semex System (SEMantic EXplorer) [Dong2005], which organizes the
data in a semantically meaningful way by providing a domain model
consisting of classes and associations between the classes. Besides,
Semex leverages the PIM environment to support on-the-fly integration
of personal and public data. Users interact with Semex through a domain
ontology that offers a set of meaningful domain objects and relationships
between these objects. Information sources are related to the ontology
through a set of mappings, share domain models with other users and
import fragments of public domain models in order to increase the
coverage of their information space. When users are faced with an
information integration task, Semex aids them by trying to leverage from
previous tasks performed by the user or by others with similar goals.
Hence, the effort expended by one user later benefits others. Semex
begins by extracting data from multiple sources and for these extractions
it creates instances of classes in the domain model. Semex employs
multiple modules for extracting associations, as well as allowing
associations to be given by external sources or to be defined as views
over other sets of associations. To combine all these associations
seamlessly, SEMEX automatically reconciles multiple references to the
same real-world object. The user browses and queries all this information
through the domain model (Figure 2).

Figure 2. SEMEX Architecture [Dong2005]

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 15

IRIS. A similar idea is exploited by the IRIS Semantic Desktop
[Cheyer2005], an application framework for enabling users to create a
“personal map” across their office-related information objects. IRIS is an
acronym for “Integrate. Relate. Infer. Share” and the framework offers
integration services at three levels (Figure 3):

1. Information resources (e.g., email messages, calendar appointments)
and applications that create and manipulate them, must be accessible to
IRIS for instrumentation, automation and query. IRIS offers a plug-in
framework, in the style of the Eclipse architecture, where “applications”
and “services” can be defined and integrated within IRIS. Apart from a
very small, lightweight kernel, all functionality within IRIS is defined
using a plug-in framework, including user interface, applications, back
end persistence store, learning modules, harvesters, etc.

2. A Knowledge Base (KB) provides the unified data model, persistence
store, and query mechanisms across the information resources and
semantic relations among them.

3. The IRIS user interface framework allows plug-in applications to
embed their own interfaces within IRIS, and to interoperate with global
UI services, such as notification pane, menu toolbar management, query
interfaces, the link manager and suggestion pane.

Figure 3. The three-layered IRIS integration framework [Cheyer2005]

4.2. Open Source Community Software

Chandler. An interpersonal information manager, adapting to the
changing user needs, is the Chandler system10. Chandler delivers an
integrated system for individuals and small workgroups and offers
capabilities in knowledge sharing to support workgroup collaboration.
Chandler sharing is server-based, works across platforms and supports
multi-author editing. Chandler’s architecture consists of several layers, as
depicted in Figure 4.

10 http://chandler.osafoundation.org/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 16

Figure 4. Chandler’s Architecture

Generally, each layer or component is able to directly access the APIs of
the layers below it. The lower level layers communicate with the layers
above via system of notifications. The lower level layers have no specific
knowledge of the layers above, and the higher level layers know only the
APIs of the layers below. At the top of the diagram, the application layer
is responsible for pulling all of the pieces together to present the
interface to the user and for starting up the system. Chandler's
Presentation layer is handled by the Chandler Presentation and
Interaction Architecture (CPIA). Its role is to provide building blocks for
Chandler's user interface, including some generic building blocks (e.g.,
Menus, Status Bar) as well as more specific building blocks (e.g., Sidebar,
Calendar View, Detail View). The services layer allows communication
with the outside world. Currently this includes sharing (via WebDAV and
CalDAV), email (IMAP, POP and SMTP), and running Chandler as a local
web server. Chandler allows users to share Collections by publishing
them to a server and similarly, a Chandler user can subscribe to other
users' Collections. The domain model defines all of the domain specific
classes that represent application content such as Calendar Events, Mail

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 17

Messages, Tasks, etc. The Repository is the persistent store for
Chandler's data driven architecture. It implements the core code for
Items and sets of Items (the basis of Collections), as well as notifications.
It also supports full text search, sorting and indexing of sets of Items.

DeepaMehta. DeepaMehta [Richter2005] is an open source semantic
desktop application based on the Topic Maps standard11. It aims at
evolving nowadays separated desktop applications into an integrated
workspace, enabling the user to organize, describe and relate information
objects like text notes, external documents and media, browse the web,
search databases and create semantic networks – all these in one
seamless, semantic-enabled desktop environment. DeepaMehta is a
service oriented application framework with a data model based on topic
maps and a UI that renders them as a graph, similar to concept maps.
Information of any kind as well as relations between information items
can be displayed and edited in the same space. The user is no longer
confronted with files and programs. Topic Maps are individual views on
interconnected content and they may evolve on their own, as the users
continue to work with the system. DeepaMehta has a layered, service
oriented architecture, the main layer being the application layer (Figure
5). It offers various ways for the presentation layer to communicate with
it via the communication layer (API, XTM export, EJB, SOAP). The built-in
server offers an out-of-the-box user interface which runs in almost any
browser. The storage layer manages the corporate memory, which holds
all topics and their data either in a relational database or simply in the
file system.

Figure 5. DeepaMehta Architecture [Richter2005]

Apogee. So far, we have looked at projects supporting mainly every-day
desktop users. Apogee12 is a project, which targets the Enterprise

11 ISO/IEC 13250:2000 "Topic Maps" standard,
http://www.topicmaps.org/xtm/1.0/#ref_iso13250
12 http://apogee.nuxeo.org/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 18

Development Process (ECM) market. More and more customers need
specific applications related to ECM to properly handle their data and
integrate in a seamless way all their digital assets and involved
processes. These applications share a lot of features and need many
common services. ECM application developers need a framework that
would ease the creation of this kind of desktop application. Apogee aims
at building a framework to create ECM-oriented desktop applications,
independent from vendor or technologies. This framework could be used
to create applications that will be integrated with any ECM platform. In
the first phase of the project two ECM providers will be implemented: a
local provider and a remote one based on the Nuxeo's CPS ECM platform
(Figure 6).

Figure 6. Apogee Deployment

Apogee objects are living inside a tree structure in the same manner as
files and folders in a file system but the similarity ends here. Apogee
resources are neither folders, nor files. They may point to physical
objects (stored somewhere) or they may represents only logical nodes in
the resource tree. Examples of possible objects are files, folders, user
groups, users or any other objects that may be represented in a tree
structure. Apogee runs as a plug-in inside the eclipse IDE.

4.3. Other Systems

Other Systems. Other relevant initiatives include (1) DBIN [Tumma-
rello2005], which is similar to a file sharing client and connects directly to
other peers, (2) PHLAT [Cutrell2006], a new interface for Windows, ena-
bling users to easily specify queries and filters, attempting to integrate
search and browse in one intuitive interface, or (3) MindRaider13, a

13 http://mindraider.sourceforge.net/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 19

Semantic Web outliner, trying to connect the tradition of outline editors
with emerging technologies. MindRaider aims to organize not only the
content of your hard drive but also your cognitive base and social rela-
tionships in a way that enables quick navigation, concise representation
and inferencing. Finally, starting from the idea that everything has to do
with everything else, Fenfire14 is a Free Software project developing a
computing environment in which you can express such relationships and
benefit from them.

14 http://fenfire.org/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 20

4.4. Conclusions

So far we have looked at a number of tools, today isolated and focusing
on complementary fields. NEPOMUK will considerably advance the state-
of-the-art and technology by creating a completely novel knowledge-
worker support system, thus bringing together these today isolated and
complementary aspects. This new technical and methodological platform,
The Social Semantic Desktop, enables users to build, maintain and
employ inter-workspace relations in large scale distributed scenarios.
New knowledge can be articulated in semantic structures and can be
connected with existing information items on the local and remote
desktops, while knowledge information items and their metadata can be
shared spontaneously without a central infrastructure. Moreover,
NEPOMUK realizes a freely available open-source integration framework
with a set of standardized interfaces, ontologies and applications. Also,
the NEPOMUK’s standardized plug-in architecture combined with usage
experiences opens up manifold business opportunities for new generic or
domain-specific products and services.

Although the systems we have looked at focus on isolated and comple-
mentary aspects, some of their architectural models were worth investi-
gating. The NEPOMUK Architecture is also based on layers, same as Hay-
stack, IRIS and DeepaMetha, having a User Interface Layer, a Service
and a Data Storage Layer. The modular architecture, also identified
within the Haystack, SEMEX and DeepaMetha systems, as well as the
standardized APIs offer an easy way of plugging-in new components. The
different components in NEPOMUK do not interact directly with each
other, like in SEMEX, IRIS or DeepaMetha, but rather communicate
through the Data Services and the Web Server Layers. In Chandler, how-
ever, the components can only communicate with the components in the
layers below. Our approach guarantees that each component may be
changed without affecting other components it interacts with. The inter-
action has to suffer only in the case in which the API of the component is
modified. Similar to Chandler, the NEPOMUK Architecture also provides
service discovery functionalities: the NEPOMUK Registry providing a
proper support for publishing and discovering the existing NEPOMUK Ser-
vices by using a standard interface.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 21

5. NEPOMUK Architecture

The text book approach for software design is to start with the system
requirements, then to identify the necessary functionalities and further to
design the system, viz. to apply a top-down approach to the
architecture. This classical waterfall model is argued by many to be a
bad idea in practice, mainly because of their belief that it is impossible to
get one phase of a software lifecycle "perfected" before moving on to the
next phases and learning from them. In a complex project like NEPOMUK
with many partners it is even harder to apply the top-down approach as
such, since some partner already came with preliminary prototypes into
the project, which has been developed further from the first day on of
the project. Each of these prototypes is codifying the share and vision of
an individual partner with respect to a semantic desktop. In conclusion,
the first step towards a common architecture was a reengineering step
of all existing -- and to some extend also envisioned -- software, viz. a
bottom-up approach in order to gain a common and harmonized view of
the architecture. As shown in the design rational Section 5.1.1 the
reengineered components link to the requirements for a Semantic
Desktop (Section 2). However, this architecture is to seen as first
starting point and by no means as the final NEPOMUK architecture.

The following will describe this harmonized high level view on the
starting point NEPOMUK architecture. As part of the architecture, the
NEPOMUK components implement services for the general architecture
and they communicate using web services and the NEPOMUK backbone.
Please note that the component/service names are adopted from the
existing software and will be refined and renamed accordingly in a later
architecture phase.

5.1. Architecture and Components

This section provides an introduction to the current NEPOMUK
Component Architecture, as well as a short description of its main parts.
The current status does not cover the whole envisioned architecture, but
only the part developed until this moment. Thus, for example, the
components dealing with the collaboration between several Semantic
Desktops are not yet present.

The Component Architecture consists of all the components and
interfaces used in NEPOMUK. The diagram from Figure 7 depicts how
these pieces are interconnected in practice. Each component has a
description of its functionality, the interfaces it supports and the
interfaces it requires from other components. WSDL was used as
description format. The Backbone and connector Infrastructure
constitutes the central part that connects all the other components and it
ensures proper communication among all of them. In the remainder of
this section we will provide short descriptions of each component present
in the general architecture.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 22

Figure 7. Current NEPOMUK Component Architecture Diagram

5.1.1. Design Rationale

The requirements and considerations from Section 2 feed into the design
rational of the starting point NEPOMUK architecture. The design rational
links the requirements to the NEPOMUK modules. This results in a N:M
mapping (neither functional nor injective). An overview of the matrix is
given in Table 1.

5.1.2. Components and Services

In the following we present a detailed description of each of the
components15.

Several Wiki types of components have been identified during the
Bottom-Up analysis phase, among which TripleWiki, KaukoluWiki,
RichWiki, SemWiki and ImapWiki, all resumed into the abstract Wiki
component. The TripleWiki is a simple semantic Wiki with direct
statements entries. The KaukoluWiki is a Wiki which allows semi-
automatic metadata generation. The RichWiki is an Eclipse-based Wiki,
which provides support for rich interactive clients. The result from the
SemWiki will be a hypertext-based prototype for personal knowledge

15 Please note that the naming of the components is originated by the reengineered
prototypes and might be changed later to reflect a more proper design.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 23

management. The ImapWiki is a Visual Knowledge Workbench with Wiki-
abilities. It is a prototype for visual as well as textual editing of
knowledge structures.

Requirement/

Component

Know
ledge

Articulation and
Visualization

Standard D
esktop

Classification
Structures

M
apping and

Aligning

W
rapping of

Legacy Inform
ation

M
etadata Storage

and Q
uerying

Linking of D
ata

Item
s and

R
elational M

etadata

Social Aspects

O
pen Architecture

Wiki X X

Structure
Recommender X

Related Item
Recommender X X

User Context
Service X X

PIMO Service X

Data Wrapper X

Personal Task
Manager X

RDF Store
(Data Service) X

Local Search
(Data Service) X

Distributed
Index (Data
Service)

 X

Metadata
Exchange
Recommender

 X

Ontology &
Metadata
Aligners

 X X

Community
Manager X

Ranker X

Backbone X

Table 1. Design Rational - Linking Requirements with NEPOMUK components

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 24

5.1.3. Components and Services

In the following we present a detailed description of each of the
components16.

Several Wiki types of components have been identified during the
Bottom-Up analysis phase, among which TripleWiki, KaukoluWiki,
RichWiki, SemWiki and ImapWiki, all resumed into the abstract Wiki
component. The TripleWiki is a simple semantic Wiki with direct
statements entries. The KaukoluWiki is a Wiki which allows semi-
automatic metadata generation. The RichWiki is an Eclipse-based Wiki,
which provides support for rich interactive clients. The result from the
SemWiki will be a hypertext-based prototype for personal knowledge
management. The ImapWiki is a Visual Knowledge Workbench with Wiki-
abilities. It is a prototype for visual as well as textual editing of
knowledge structures.

The Structure Recommender Component refers to pro-active
structure recommendation. Using Ontology-based Information Extraction
(OBIE) the system will derive certain structural patterns and metadata
automatically from text such as Wiki pages, emails, etc... To deal with
user feedback the OBIE components will use mixed-initiative learning, in
which the user first does the recommendation task alone, then the
machine learns how to suggest answers, which the user corrects where
necessary, and so on.

The Related Item Recommender Component makes related item
recommendations based on content, structure and semantic data. As
with the previous component, the system is able to learn from user
feedback.

The User Context Service will realize a set of interfaces and services to
allow the observation of and reasoning about a user’s current work
context. Interfaces and prototypes for context detection plug-ins will be
realized. When integrated into the semantic desktop, these plug-ins will
allow to elicitate knowledge about the current goals of the user which in
turn is useful for tuning information structuring, storage, and retrieval
services.

The PIMO Service hosts most ontologies that need to be accessed in an
integrated way. It stores the personal information model/conceptual data
structures. Also, it allows qualified access to the personal information
model, to functions which create classes, instances, relate instances to
tags, etc.

The Data Wrapper allows access to several data source types. The
different adapters / wrappers are packaged as one big component (for
ease of use and installation).

The RDF Store represents the local database to store all metadata of
the user, including ontologies, metadata of files, etc. We would suggest
providing four different storage areas, with distinction made on
requirements and use. Each is a separate RDF repository with different
features: (1) ontology store, containing all ontologies plus CDS

16 Please note that the naming of the components is originated by the reengineered
prototypes and might be changed later to reflect a more proper design.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 25

(Conceptual Data Structures)/PIMO, (2) resource store, containing all
crawled resources, files, e-mails, address book, calendar, web-sites, (3)
configuration store, containing configuration data of the system, and (4)
service data store, containing routing tables, context trails, observed user
actions, statistic data, etc. These areas are still to be further discussed
and agreed within the consortium.

The aim of the Local Search infrastructure is to extend traditional full
text search with more sophisticated metadata based searching and
ranking capabilities. The component builds upon an existing open source
desktop search engine, such as Novell / SuSE Beagle17. The work
comprises the integration of semantic metadata into the search paradigm
and the realization of personalized and desktop-adapted ranking
mechanisms for search results.

The Personal Task Manager is a tool for personal process
management which allows for the ad-hoc definition of activities (including
hierarchical refinement) and their interconnection to various documents
in the personal workspace.

The Distributed Index component offers a distributed index of data
shared by users of the system. The component guarantees that users
can find data shared by other users by replicating the index information
among participating computers. The data itself remains at the providing
user and is not replicated, therefore not accessible if the users goes
offline, even though other users would be able to query it. The
distributed index offers the four basic operations required to insert,
update, delete and retrieve data.

The Metadata Exchange Recommender. Current social networking
research is mostly targeted at analyzing the interactions between users
and the communities they generate. Although this is a necessary step in
building social software, it is just its beginning. In order to interact and
find relevant material in a community, there must be a concrete
mechanism for metadata exchange between users, possibly subject to
several access models. This component will thus result in desktop
metadata sharing solutions, as well as recommendation algorithms for
our social semantic infrastructure.

The Ontology & Metadata Aligners component consists of several
pieces: A Self Organized Metadata Aligner, a Semi-Automated Metadata
Aligner, and a Social Metadata Aligner. The Metadata Aligner will
implement one or more metadata alignment methods, as well as some
means to automate these proposed solutions. The component uses
name-based, structure-based, and content / instance-based similarity
measures in order to compute the ontology mappings. Finally, it will use
data gathered from the community to discover relationships between
items in NEPOMUK’s knowledge base.

The Community Manager consists of a Community Detector, a
Community Labeller, as well as a Community Structure Analyzer. They
are all applications of Semantic Social Network Analysis and analyze
workflows and data available on the Social Semantic Desktop.

17 http://beagle-project.org/Main_Page

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 26

The Ranker. Along searching for metadata into our social circle, we will
probably be overwhelmed by the amount of responses we obtain,
especially considering the already very large amounts of data
encompassed by current PCs. Thus, different ranking algorithms based
on shared metadata and generic user ranking information will be brought
in place, in order to facilitate a fast access to the high quality shared
resources in the social environment.

The NEPOMUK Backbone is the main component responsible for the
interconnection of the other components, providing the means for
registration and authentication of the existing services.

The Data Services incorporate the data provider functions for data and
metadata for the other components.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 27

6. Backbone and connector infrastructure

In the context of the Semantic Desktop, the roles of the Backbone and
Connector Infrastructure can be split into two main categories:

• Interoperability and invocation (delegation)

• Registry – publication and discovery

The first main role of the backbone is to assure a transparent
interoperability between several applications, represented as services on
the desktop. The interoperability issue will be solved by establishing a
standard communication and interaction protocol. The backbone will
describe the protocol to use for contacting the services and furthermore
how services are / will be described. A service requiring a certain
functionality will use the protocol and interfaces defined and will not be
aware of the provider’s underlying implementation details.

The second main role deals with the publication and discovery of the
existing services on the desktop. The backbone aims to act as a desktop
service registry, able to accept publication and discovery inquiries from
local services. Thus, one service requiring a certain functionality does not
need to know the provider’s location a priori, but instead it needs only to
ask the registry for it.

In the following, we will start by defining the interoperation problem
through the description of a possible scenario in the context of the
Semantic Desktop and afterwards, detail how we intend to solve the two
afore mentioned issues, i.e. interoperability and registry.

6.1. Defining the problem

A good way to understand and define a possible problem is by modelling
it in terms of a scenario. We will place our scenario in the context of a
typical desktop and make a series of feasible assumptions in order to
show the roots from which the application interoperation problem arises.

Figure 8. Example of a possible application inter-operation scenario on the desk-
top

Let us assume the existence of the following two applications on a
desktop, which will rest on a Linux operating system (the scenario can be

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 28

equally applied to other operating systems, and it is depicted in Figure
8):

• An RDF Service Provider, implemented in Java and exposed as a
Java Web Service (using SOAP/HTTP), offering the possibility to
store and retrieve data in RDF format (for e.g. semantic
annotations about documents), and also providing support for
inference on the already existing data. It can be seen as a front-
end for an RDF Repository.

• A plugin (or extension) inside the KMail email client, implemented
in C++ & Qt, and having the goal of collecting particular
information from the exchanged emails and contacts. The plugin
will ideally act as a client for the RDF Service in order to be able
to store the collected information and use the Provider’s
inference capabilities.

The problem that arises in this simple setting is the difficulty of
communication due to the difference of the programming language in
which the two applications are implemented. A quick and fast solution to
this, would be the use of a particular intermediary application capable of
understanding requests written in C++, translate them into SOAP/HTTP,
delegate them to the RDF Service Provider, and then fetch the results
and transform them back into C++. In this particular case, the above
mentioned solution is sufficient.

At a later stage, we assume the existence of a Text Analysis Application,
implemented also in C++ and having functionalities such as word
detection and counting, semantic annotation, Named Entity Recognition
or text summarization available for the desktop. The KMail Plugin could
make use of this application to detect the context of the received emails,
based on the body of the message and use this as additional information
in its reasoning process. In this particular case, the communication could
take place directly through method invocation, presuming that the client
would know a priori the interface provided by the Text Analysis
Application.

The problem increases in complexity, with the number of added
applications and thus, combining direct method invocation with particular
communication channels between each pair of applications does not
represent a feasible solution any more. Therefore, the need for a unified
general approach becomes crucial in order to properly solve the
interoperability issue.

Furthermore, until now, we assumed that the KMail plugin is implicitly
aware of the existence of both applications and knows exactly how to
connect to them and use them. This would work in a static setting in
which users always use the same application(s).

However in a typical desktop setting the situation is different. The variety
of end-user applications is quite large and it is sufficient to consider only
a certain category of applications in order to observe that the afore
mentioned assumption does not stand. Thus, we have to be able to deal
with different applications providing similar functionality and to allow a
certain degree of flexibility in discovering existing applications which are
open for collaboration. A possible solution to these two issues can be
captured by the standardization of the interfaces provided by the
applications which fall into a particular category and creating a discovery
mechanism to be used by all applications which have functionalities to
provide and by all probable clients of these functionality providers.

The NEPOMUK backbone and connector infrastructure aims to solve two
of these three issues, i.e. the application interoperation and discovery,

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 29

while the NEPOMUK Semantic Desktop framework provides a solution to
the third one, i.e. application interface standardization.

6.2. NEPOMUK Backbone architecture

This section will give an overview of the NEPOMUK backbone and
connector infrastructure starting with the description of its internal
organization, then detailing the NEPOMUK Services and Registry, and in
the end how inter-component communication is achieved.

6.2.1. Backbone components

Internally the NEPOMUK Backbone is organized in three layers: the Client
layer, the Core layer and the Provider layer. Each of these three layers
(see Figure 9) is represented by a particular component, described as
follows.

Figure 9. NEPOMUK Backbone layered organization

The Client layer is represented by the Backbone library. This library
resides in the client component’s environment and provides an abstract
interface which the client uses in order to achieve communication with
the Core layer. The role of the library is to hide the communication
implementation details and detach the business logic part of the
communication between clients and service providers from the clients. As
a direct result, the client will always use the same abstract interface to
communicate with the core layer and the service providers and thus will
not be aware of the actual way in which the communication is achieved.
This approach is similar to the abstraction layer present in Jade18 (Java

18 http://jade.tilab.com/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 30

Agent DEvelopment Framework), or to other approaches present usually
in agent environments.

From the implementation point of view, the library is implemented in the
client’s programming language and has a “dual-sided” organization. On
one side it provides the abstract interface against which the clients are
programming. On the other side, it realizes the actual communication
with the core layer of the Backbone and with the service providers. One
could see this library as a black box, having always the same two sides,
but without knowing how and in which language is the interior realized.
This was also our goal: to provide a uniform way of achieving the
communication between clients and providers, without considering the
underlying implementation details. The Backbone Library API can be
found in Annex B.

The Provider layer is represented by the Backbone container which
is the provider side alternative for the Backbone library. It assures the
flexibility of moving a service provider from one environment to another
without the necessity of changing the implementation. Both the library
and the container represent logic blocks of the backbone, although
physically they reside in the client’s and respectively provider’s
environment.

The Core layer contains the Core Backbone, including two logical
blocks: the Backbone Registry and the Backbone Authentication
mechanism. The main roles of the Core Backbone are:

• to provide a way for service publishing and discovery, discussed
in detail in Section 6.2.4,

• to route the exchange of messages between a client present in a
particular environment and a service provider present in a
different environment, detailed in the following section,

• and, to offer the necessary authentication mechanisms, which in
this phase are only part of the design, but not yet realized.

6.2.2. Backbone federation

The way in which the actual communication between clients and service
providers is realized, is mainly driven by the underlying implementation
language of the Core Backbone. By following this approach we wanted to
optimize to the maximum the communication mechanism and to
eliminate any possible overhead. As an example, if the Core Backbone is
implemented in C++ and uses the DBus19 protocol, and the client and
service provider are also implemented in C++, then the communication is
realized using their native protocol, i.e. DBus. In this case, the role of the
Core Backbone is only to provide the registry information, the real
communication being done directly between client and service provider
(to be more specific, between the backbone library and the backbone
container).

The example presented the most often encountered scenario in a typical
desktop setting, and also the perfect way in which communication can be

19 http://dbus.freedesktop.org/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 31

realized. But, in order to allow the freedom of deploying services
implemented also in different programming languages than the one in
which the Core Backbone or the clients are implemented, we introduced
the notion of Backbone Federation.

Figure 10. Backbone federation

The federation assumes the existence of multiple backbones on the same
desktop, implemented in different programming language and having
their own communication protocols. The reader has to keep in mind that,
every implementation respects the imposed standards, i.e. every
published interface of the logical blocks of the backbone is the standard
interface.

The presence of multiple backbones assures the communication
efficiency between the clients and service providers implemented in the
same programming language and communicating via the same protocol.
In order to provide a standard way to realize also the communication
between clients and service provider implemented in different languages
and having different communication protocols, the Core Backbones will
create virtual paths between them and thus opening direct
communication channels by exchanging standard messages using
SOAP/HTTP. Figure 10 depicts the organization of a federation.

Each newly deployed Backbone will contact the other existing backbones
and register itself with them. And thus, when a client will send a service
discovery inquiry to its native backbone, the inquiry will be propagated to
all the registered backbones and the complete result will be returned to
the client. Also, all the communication between a client and a particular
service will be routed through the two respective backbones to which
they belong to. A detailed description of the possible communication
scenarios is presented in Section 6.2.5.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 32

6.2.3. NEPOMUK Services

A service is a desktop application deployed as a component in the
NEPOMUK architecture, having an “end point”, through which it will be
accessed by other components, and defining its interface as a WSDL
description. The description will contain the operations available for the
specified service. At deployment time, the level of access will also be
defined in order to be able to use these operations.

Moreover, all the provider applications are exposed through standard
interfaces allowing users to replace an application with another without
making any modifications. Also, the communication takes place without
considering the underlying programming language. The WSDL service
description raises the definition to an abstract level, hiding the
implementation details and therefore providing a uniform and transparent
way for inter-component communication.

The overall goal of the NEPOMUK architecture is to define a set of
services having standardized interfaces, with the remark that the services
themselves do not represent part of the backbone. They represent the
method through which the functionality of a component is defined and
accessed.

6.2.4. NEPOMUK Registry

The NEPOMUK Registry represents the main container of the registered
NEPOMUK services. It has three main roles: to register new NEPOMUK
services, to un-register existing ones and to provide answers to the
received discovery inquiries. It is important to point out that the
NEPOMUK Registry is not involved in the service invocation.

The advantages brought by using such an approach are the following:

• All the services need to know only the NEPOMUK Registry’s end-
point, as opposed to a static inter-service communication where
the service would be obliged to know directly the other services’
end-points.

• Publishing and discovering of the existing NEPOMUK services is
done by using a standard interface.

• The discovery inquiry support offers a high flexibility in finding a
particular service based on the required functionality as opposed
to its name.

We argue that the above mentioned set of advantages is enough to
counter-balance the biggest disadvantage of this approach, i.e. the
overheads introduced by the discovery, which could fluctuate depending
on the actual implementation. A view over the Registry API can be found
in Annex A.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 33

Figure 11. Sequence diagram showing the interaction steps between the services
and the NEPOMUK Registry

Figure 11 details the steps needed to be performed in order to publish
and to discover a particular service:

• The Service Provider communicates the intention of being
published to the Backbone Container.

• The Backbone Container contacts the Backbone Registry and
registers the Service

• The Backbone Registry responds to the Backbone Container with
a registration acknowledgment that is afterwards propagated to
the Service Provider. In this moment the service can be
discovered by eventual client components.

• A client uses the standard interface of the Backbone Library to
discover a message.

• The Backbone Library asks the Backbone Registry for the
particular service.

• Presuming that the inquiry was successful, the Backbone Registry
returns the service’s endpoint.

• The Backbone Library creates a service stub encapsulating the
service’s endpoint and returns the stub to the Client.

• The Client uses the stub to delegate the communication tasks
with the actual service.

The afore-mentioned discovery scenario described conceptually how the
discovery mechanism is realized. The way in which the discovery is
actually performed fits in the two possible communication scenarios and
represents the subject of the following section.

6.2.5. Inter-component communication

As shown in the beginning of this section the communication between
clients and service providers can be achieved in different ways depending
on the deployment situation. In reality, there are two possibilities, which
we will detail as follows.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 34

6.2.5.1 Native communication

Figure 12. Native communication scenario

Native communication is achieved when all three participants are
implemented in the same programming language and using the same
communication protocol, i.e. the client, the service provider and the core
backbone. In this setting, the backbone library will use the Core
backbone only for its registry capabilities, the actual communication with
the service provider being realized directly, as shown in Figure 12. The
advantage is represented by the absence of any communication
overhead, which may appear when the messages need to be transformed
from one format to another. We could state that most of the
communication realized on a usual desktop will profit of this scenario.

6.2.5.2 Non-native communication

Figure 13. Non-native communication scenario

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 35

The non-native communication takes place when the desktop hosts a
federation of backbones. In this case the backbone library uses the
backbone core as a message router. As depicted in Figure 13, the
backbone library communicates with the Backbone Core in its native
protocol, the message is then being transformed into SOAP/HTTP by the
core, routed to the proper backbone, which transforms it into its native
protocol and passes it to the backbone container.

6.3. Scenario revisited

Figure 14. Application interoperation scenario in the NEPOMUK Architecture con-
text

Coming back to the scenario presented in Section 6.1. , we will now
present it in the context of the NEPOMUK Architecture and in the
presence of the NEPOMUK Backbone (see Figure 14). The following
transformations occurred:

• Both the Text Analysis Application and the RDF Service were
modeled as standard NEPOMUK Components (see Section 5.1.),
and therefore the Text Analysis Application is represented here
by the Structure Recommender Service and the RDF Service by
the Data Services.

• Due to the different underlying programming languages of the
two services, each was deployed as part of a particular
Backbone, able to provide direct communication between the
Backbone Core and the respective Service.

• As a final step, in order to achieve the communication presented
in the scenario, we created a backbone federation, as explained
in Section 6.2.2.

The big advantage of this modeling approach is that one is free to deploy
new C++ and Java-WS clients which will directly profit of the existing
native communication possibilities and also of the already present
federation of backbones.

The reader has to note that this solution represents is an optimal solution
for deploying services implemented in different programming languages
and using different communication protocols. It takes the advantage of

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 36

the presence of the backbone federation and profits to the maximum
from the underlying native communication protocol. In reality there could
be a simpler solution presuming the existence of a single backbone and
all services deployed in it. In this case, the Backbone Container takes
care of all communication issues that might arise as a consequence of
the usage of different programming languages and communication
protocols by the existing services and backbone.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 37

7. Backbone and Connector infrastructure Implementation

The design of the backbone brings the following advantages:

• establishing a standard for NEPOMUK components to describe
their services,

• establishing a standard for NEPOMUK components for their
communication,

• freedom in the choices of the programming language and

• freedom in the choice of the native communication platform.

First prototypes of the NEPOMUK backbone have been implemented
based on the previous defined interfaces. Currently, there are two
undergoing prototype implementations: the reference implementation in
Java, using Web Services Architecture20 and a second one, in C++, using
KDE and the native Linux DBus communication platform21. An
implementation supporting OSGI process calls will follow.

The Java-Web Services implementation was realized according to the
architecture described in the previous section.

• The Core Backbone is represented by a Web Service
implemented in Java and deployed as an Axis222 service in the
Apache Tomcat23 web container. Due to its deployment type, the
communication with the Registry can be achieved by using SOAP
over HTTP and REST, the difference being given by the different
endpoint.

• The Registry implements the standard NEPOMUK
Registry interface and already provides the support for
the backbone federation. In addition, it creates a local
store of registered NEPOMUK components which is
loaded and verified at start-up and saved every time a
modification appears.

• The Client library provides the standard interface as a Java
interface which can be directly used during the implementation.
It hides the underlying communication mechanisms, by
transforming the local method invocations into SOAP/HTTP core
backbone calls. The current status provides the support for the
non-native communication (see Section 6.2.5.2), but it still needs
proper testing before the actual deployment.

• The Backbone container. Due to the Web Services nature of
the implementation, the service providers need to be deployed as
Web Services, and thus providing the standard WSDL interface
and the necessary SOAP/HTTP communication. Therefore, this

20 http://svn.nepomuk.semanticdesktop.org/repos/trunk/component/Comp-Backbone/Java-
WS-Backbone/
21 svn://anonsvn.kde.org/home/kde/branches/work/nepomuk-kde/
22 http://ws.apache.org/axis2/
23 http://tomcat.apache.org/

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 38

component is represented in our case by Axis2. In the near
future, we intend to implement a flexible Backbone container
which will provide the ability of moving a NEPOMUK service from
one container to another without the necessity of changing the
underlying implementation.

In general, the beauty of the solution is given by the fact that all
component owners program against the same standardised backbone
interfaces independent from the underlying means of communication. As
well as all services provider will describe their interface in a standardised
way by means of WSDL description. These descriptions will be either
used directly, in the case of the web service implementation or
interpreted accordingly in the case of the native implementation such as
OSGI or DBUS.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 39

8. Discussion and Conclusions

Software architectures are not specifications. They are intended to
convey a common understanding and make people understand what is
going on in a system, viz. one of the main goals of architecture is to
communicate a design. This is especially important in a project of the
size of NEPOMUK where we are concerned about a common
understanding between over a hundred individuals. Hence, the starting
point architecture presented here and the first version of the connector
and backbone infrastructure are the result of many discussions and
outcomes of consensus processes. Both represent a sound basis for the
continuation of our work. While we presume that the core design of the
backbone presented here is quite stable, we are also quite aware that the
NEPOMUK architecture must undergo additional clarification and
refinement steps within the next few months.

The work presented here resulted into the following:

• An initial starting point for the NEPOMUK architecture, which
describes an initial harmonized view of early software services
and components

• A backbone and connector infrastructure framework and API.

• Implementations of the backbone and connector infrastructure in
the form of libraries. Firstly, a reference architecture using
platform neutral web services infrastructure. Secondly, native
implementations for specific platforms.

In addition to the major contributions listed above the work provided
several additional insights and remaining questions, such as:

• Throughout Nepomuk we defined methods that use RDF for
transporting any complex parameters/return values for all types
that are explicitly defined in our Ontologies. How to describe the
RDF data (or ontological concepts) in the WSDL interface
description?

• Using Ontologies in the Software Architecture shifts the
engineering from the software design to ontology design.
Significant behaviour within the system might be modelled by
ontologies. What is an appropriate methodology and tool support
for such an ontology driven architecture?

For the next months we envision the following steps:

• By extending the functionalities of the backbone and connector
infrastructure it will begin to further resemble semantic desktop
middleware. Hence, we need to adopt the name accordingly as
well as to define the core set of services that such a semantic
desktop middleware has to provide.

• Also for the NEPOMUK architecture we will define and
standardise the core set of services which denotes a social
semantic desktop.

• In general the design of the NEPOMUK architecture will be
improved by applying an interwoven approach of top-down and
bottom-up analysis. The top-down analysis will consider the
feature request of the NEPOMUK cases studies while the bottom
up analysis will consider further insights of the evolutionarily
prototypes.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 40

Ideally, the backbone and connector infrastructure should interact with
operating system libraries. The Social Semantic Desktop services should
start as services of the native operating systems, just as present day file
systems and network services are started. This would also enable better
integration of external data sources. Current implementations include
Spotlight on Apple’s OSX or the index services on Microsoft Windows. We
anticipate semantic indexing will become a part of future operating
systems, based on the NEPOMUK standards.

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 41

References

[BernersLee2001] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. In Scientific American, May 2001.

[Brown2003] P. Brown. DCOP: Desktop COmmunications Protocol. May
2003. http://developer.kde.org/documentation/other/dcop.html

[Cheyer2005] A. Cheyer, J. Park, R. Giuli. IRIS: Integrate. Relate. Infer.
Share. In Proceedings of the 1st Workshop on The Semantic Desktop -
Next Generation Personal Information Management and Collaboration
Infrastructure at the International Semantic Web Conference, Galway,
Ireland (2005)

[Christensen2001] E. Christensen, F. Curbera, G. Meredith, S.
Weerawarana. Web Services Description Language (WSDL) 1.1, W3C
Technical Report, March 2001, http://www.w3.org/TR/wsdl

[Cutrell2006] E. Cutrell, D. C. Robbins, S. T. Dumais, R. Sarin. Fast,
flexible filtering with Phlat - Personal search and organization made easy.
In Proceedings of the SIGCHI conference on Human Factors in computing
systems. Montreal, Quebec, Canada (2006)

[Dong2005] X. (Luna) Dong, A. Halevy. A Platform for Personal
Information Management and Integration. In Proceedings of the 2nd
Biennial Conference on Innovative Data Systems Research (CIDR),
Asilomar, Canada (2005)

[Fielding2000] R. T. Fielding, “Architectural styles and the design of
network-based software architectures”, Dissertation, 2000

[Gudgin2003] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H.
Frystyk Nielsen. SOAP Version 1.2 Part 1: Messaging Framework. W3C
Technical Report, June 2003, http://www.w3.org/TR/soap12-part1/

[Karger2005] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.
Haystack: A General Purpose Information Management Tool for End
Users of Semistructured Data. In Proceedings of the 2nd Biennial
Conference on Innovative Data Systems Research (CIDR), Asilomar,
Canada (2005)

[Richter2005] J. Richter, M. Volkel, H. Haller. DeepaMehta - A Semantic
Desktop. In Proceedings of the 1st Workshop on The Semantic Desktop -
Next Generation Personal Information Management and Collaboration
Infrastructure at the International Semantic Web Conference, Galway,
Ireland (2005)

[Sauermann2006] L. Sauermann, G. Grimnes, M. Kiesel, C. Fluit, D.
Heim, D. Nadeem, B. Horak, A. Dengel. Semantic Desktop 2.0: The
Gnowsis Experience. Semantic Web In Use Track of the 5th International
Semantic Web Conference (ISWC), Athens, Georgia, USA (2006)

[Tummarello2005] G. Tummarello, C. Morbidoni, P. Puliti, F. Piazza. The
DBin Semantic Web platform: an overview. In Proceedings of WWW2005
Workshop on The Semantic Computing Initiative (SeC), Chiba, Japan
(2005)

[Gnome] Gnome Bonobo. http://www.gnome.org/gnome-
office/bonobo.shtml

[Oasis2004] OASIS. Introduction to UDDI: Important Features and
Functional Concepts. October 2004. http://uddi.org/pubs/uddi-tech-
wp.pdf

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 42

[OSGI2006] The OSGi Alliance. OSGi Technology. September 2006.
http://www.osgi.org/osgi_technology/index.asp?section=2

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 43

Annex A – NEPOMUK Registry API

Function Description

registerService(String uri, String typeDescription) - registers a service based on the provided uri

registerServiceByName(String name, String uri, String
typeDescription)

- registers a service based on the provided
name and uri

unregisterService(String uri) - unregisters a service based on the provided
uri

unregisterServiceByName(String name) - unregisters a service based on the provided
name

discoverServiceByType(String typeDescription) - returns the service descriptor of the
discovered service based on the provided
WSDL file URL

discoverServiceByName(String name) - returns the list of service descriptors
representing the discovered service based on
the regex

discoverServiceByURI(String uri) - returns the service descriptor of the service
with the given uri

allServices() - returns the list of all registered services

registerRegistry(String uri) - registers a new Registry as part of the
federation

unregisterRegistry(String uri) - unregisters a Registry from federation

 NEPOMUK 08.11.2006

Deliverable D6.1 Version 1.0 44

Annex B – NEPOMUK Backbone Library API

Object/Function Description

BACKBONE – Singleton

getRegistry() - returns an instance to the NEPOMUK Registry

REGISTRY

discoverService(String typeDescription) - returns a NEPOMUKService discovered by the
provided type

discoverServiceByName(String name) - returns a list of NEPOMUKService(s) discovered by
the provided name (regex)

registerService(ServiceDescriptor servDesc) - registers a new NEPOMUKService in the Registry

unregisterService(ServiceDescriptor servDesc) - unregisters the provided NEPOMUKService

unregisterService(String uri) - unregisters a NEPOMUKService based on the
provided uri

NEPOMUKService

sendMessage(Message message) - sends a message to the current NEPOMUKService
and returns a Result

getServiceDescriptor() - returns the ServiceDescriptor for the current
NEPOMUKService

Message

addParameter(Object value) - adds a new Parameter to the list of parameters

setParameters(List<Object> values) - sets the list of parameters to the one provided

setMethod(String name) - sets the name of the method

Result

getValue() - returns the value of the result. Note: the type of
the value is already known by the user, so one
could cast directly the returned type to the
expected one

getStatus() - returns the status of the result

ServiceDescriptor

getName() - returns the name of the service

getTypeDescription() - returns the type description (WSDL URL)

getURI() - returns the service’s uri

