
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

Intermediate NEPOMUK Architecture
Deliverable D6.2.A

Version 1.0

03.09.2007

Dissemination level: PU

Nature R/P

Due date 31.08.2007

Lead contractor NUIG

Start date of project 01.01.2006

Duration 36 months

NEPOMUK 03.09.2007

Authors

Gerald Reif, University of Zürich
Tudor Groza, DERI, NUIG
Siegfried Handschuh, DERI, NUIG
Mehdi Jazayeri, USI
Cédric Mesnage, USI

Contributors

Gunnar Grimnes, DFKI
Edith Felix, Thales
Knud Möller, DERI, NUIG
Rosa Gudjonsdottir, KTH
Enrico Minack, L3S
Leo Sauermann, DFKI

Mentors

Roman Schmidt, EPFL
Ernie Ong, SAP
Harald Gall, University of Zürich

Reviewers

Paul Chirita, L3S
Stéphane Laurière, Mandriva

Deliverable D6.2.A Version 1.0 ii

NEPOMUK 03.09.2007

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Erwin-Schroedinger-Strasse (Building 57)
D 67663 Kaiserslautern
Germany
Email: bernardi@dfki.uni-kl.de, phone: +49 631 205 3582, fax: +49 631 205 4910

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH (DFKI)
IBM IRELAND PRODUCT DISTRIBUTION LIMITED (IBM)
SAP AG (SAP)
HEWLETT PACKARD GALWAY LTD (HPGL)
THALES S.A. (TRT)
PRC GROUP - THE MANAGEMENT HOUSE S.A. (PRC)
EDGE-IT S.A.R.L (EDG)
COGNIUM SYSTEMS S.A. (COG)
NATIONAL UNIVERSITY OF IRELAND, GALWAY (NUIG)
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE (FZI)
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER (L3S)
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS (ICCS)
KUNGLIGA TEKNISKA HOEGSKOLAN (KTH)
UNIVERSITA DELLA SVIZZERA ITALIANA (USI)
IRION MANAGEMENT CONSULTING GMBH (IMC)

Copyright: NEPOMUK Consortium 2007
Copyright on template: Irion Management Consulting GmbH 2007

Deliverable D6.2.A Version 1.0 iii

NEPOMUK 03.09.2007

Versions

Version Date Reason

0.1 25.05.2007 First draft by Tudor Groza

0.8 23.08.2007 version by Gerald Reif

0.9 30.08.2007 Version by Mehdi Jazayeri and Cédric Mesnage

1.0 03.09.2007 Final version by Siegfried Handschuh, review/finalisation by Ans-
gar Bernardi/Markus Junker

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

Deliverable D6.2.A Version 1.0 iv

NEPOMUK 03.09.2007

Executive summary

This deliverable presents the current progress in the architectural committ-
ments of the NEPOMUK project. It builds upon the outlines, approaches, and
goals documented in deliverable D6.1 and serves as basis for further discus-
sion and as an intermediary step towards the final NEPOMUK architecture.
The NEPOMUK architecture assembles the different understandings in the
project to reach a common description of the structure, abstractions and rela-
tions of the social semantic desktop main aspects.
After introducing the terminology used in this deliverable, we present the method-
ology used to merge the main knowledge flows of the project. The NEPOMUK
engineering cycle combines the activities required to achieve the project goals.
We present the scenarios and methodology used to formalise the case study
requirements and the resulting abstracted list of functionalities.
The main results of this document are :

• A middleware-based architecture supporting the integration of compo-
nents,

• A service-oriented modularization based on standard communication
techniques,

• Ontological support for social-semantic-based Middleware.

The security implications and requirements of the social semantic desktop
are discussed and explained. We give a possible scenario and architectural
solutions.
We combine and discuss the relations between the current implemented com-
ponents, the architecture services and the studied functionalities. We analyse
the missing parts of the architecture and implementation and give some ex-
planations and possible solutions.
We conclude by looking at the current issues, evaluation and next steps of the
architecture.

Deliverable D6.2.A Version 1.0 v

NEPOMUK 03.09.2007

Table of contents

1 Introduction . 1
2 Terminology . 1
3 Methodology . 2
4 Scenarios . 3

4.1 Methodology . 3
4.2 The Semantic Dimension . 4
4.3 The Social Dimension. 5

5 Functionalities . 5
6 Architecture . 7

6.1 Overview . 8
6.2 Communication . 9

6.2.1 Working with RDF . 9
6.2.2 Passing Instances in Messages 10

6.3 NEPOMUK Ontologies. 11
6.4 NEPOMUK Middleware . 13

6.4.1 Services . 14
6.4.2 Extensions . 15

6.5 Implemented components . 16
6.6 Usage Examples of Core Services by Extensions and

Applications. 18
6.6.1 Example: Task Management . 18
6.6.2 Example: Application to Application Communi-

cation . 19
7 Security . 19

7.1 Security requirements . 19
7.2 Achieved terminology . 20
7.3 Security scenario example . 21
7.4 Architectural implications . 22

8 Current Architecture Status . 22
9 Conclusion . 24

Deliverable D6.2.A Version 1.0 vi

NEPOMUK 03.09.2007

1 Introduction

The aim of the NEPOMUK project is to provide a standardized description of
a Social Semantic Desktop architecture and to realize reference implementa-
tions and evaluated use cases.
In traditional desktop architectures, applications are isolated islands of data -
each application has its own formats, unaware of related and relevant other
applications.
The problem on the desktop is similar to that on the Web. On the Web we face
isolated data islands, on the desktop there is no standardized approach to find
and interact between applications. The Social Semantic Desktop paradigm
adopts the ideas of the Semantic Web paradigm. Formal ontologies capture
both a shared conceptualization of desktop data and personal mental models.
The objective of this document is the presentation of the current NEPOMUK
Social Semantic Desktop architecture. It serves as a communication bridge
between the case study user requirements and the NEPOMUK technical part-
ners. The scenarios developed in the project are abstracted in a list of func-
tionalities. The developed components are formalised as a set of services. We
analyse, compare and relate these two approaches to create the NEPOMUK
architecture.
This deliverable follows from deliverable D6.1 and presents a more detailed
and comprehensive view of the NEPOMUK architecture as currently shared
by the consortium. We follow a systematic process to ensure the integration
of all partners visions.
The deliverable is structured as follows. We start by recalling key terminology
(Sect. 2) and the followed methodology (Sect. 3). We describe the developed
case study scenarios (Sect. 4) and the functionalities abstracted from them
(Sect. 5). We then present the architecture(Sect. 6) in terms of ontologies,
communication, services and components. Security requirements and the ar-
chitectural implications (Sect. 7) are discussed next. We finish the document
by analysing the current status (Sect. 8) of the architecture and offer some
conclusions and next steps.

2 Terminology

We try to use as much as possible common terms to facilitate the understand-
ing of the document by the reader. The following definitions are taken from the
Oxford Dictionary.

Middleware – software that occupies a position in a hierarchy between the
operating system and the applications, whose task is to ensure that soft-
ware from a variety of sources will work together correctly.

Service – a set of unified related functionalities published under one interface.
A service can be implemented by a composition of components or by a
single component.

Component – a part or element of a larger whole, e.g. a piece of software.

API – interface description of a service.

Registry – software that provides the means for registering, unregistering and
discovery of services.

Architecture – the conceptual structure and logical organization of a com-
puter or computer-based system.

Deliverable D6.2.A Version 1.0 1

NEPOMUK 03.09.2007

Application – a program or piece of software designed and written to fulfill a
particular purpose of the user.

Extension – a part that is added to something to enlarge or prolong it; a
continuation.

Functionality – the purpose that something is designed or expected to fulfill.

Scenario – a postulated sequence or development of events.

Persona – the aspect of someone’s character that is presented to or per-
ceived by others.

Usage – the action of using something or the fact of being used.

3 Methodology

Figure 1: NEPOMUK Engineering Cycle

In a classical engineering project, engineers start with a set of requirements
and build a system to satisfy those requirements. In a project aimed at de-
veloping innovative research-oriented artifacts, one can hardly start with a
well-defined set of requirements. On the other hand, on the implementation
side one usually uses an exploratory development method. In the case of
building the NEPOMUK architecture we considered two important aspects:
(i) existing software developed by the partners, such as P-Grid (the peer-to-
peer system) [1], Beagle++ search engine [6] or Aperture [3] — the metadata
extraction system, and (ii) the usability research held with the case studies
partners, performed by interviewing potential users of the Social Semantic
Desktop (SSD). To reconcile these two aspects, we need a combination of top-
down and bottom-up approaches. We have developed a methodology based
on an engineering cycle (Figure 1). This cycle represents the way in which we
intend to integrate the existing technologies (a bottom-up approach) with the
needs coming from the users (a top-down approach).
Clockwise, Figure 1 shows a forward engineering cycle. We analyzed the
end-user’s intended usage of the SSD, studied the different use cases and

Deliverable D6.2.A Version 1.0 2

NEPOMUK 03.09.2007

formulated them into scenarios. We generalized the individual scenarios and
extracted the common functionalities that make up the SSD. These function-
alities formed the basis to define the reference architecture which in turn lead
to the service specification and implementation that is evaluated with the
end-users. Working in parallel, partners already started the implementation
of certain components that are likely to be needed by the SSD. Therefore, we
reverse engineered these components to get their specifications and used the
gained experience and knowledge when defining the architecture. Reverse
engineering follows a counter-clockwise path through the cycle.
The resulted NEPOMUK architecture represents a confluence of three differ-
ent building blocks: (i) the requirements and objectives present in the vision of
the SSD, (ii) the functionalities extracted from user studies (forward engineer-
ing), and (iii) the service specifications of existing implementations (reverse
engineering). This confluence provides a verification of the architecture, built
on a shared understanding of all partners involved in the project. We see it as
a perfect roadmap towards the realization of the SSD.
In the following, we go into details in some of the parts of the engineering
cycle, by presenting real-world scenarios that we considered as being partic-
ularly representative for the SSD paradigm and show the list of functionalities
abstracted from the user study material.

4 Scenarios

Before we move on to the specific functionalities that a Social Semantic Desk-
top supports and discuss how they are implemented, we first present scenar-
ios which illustrate what an SSD is, how it is used, and how it changes the way
we do knowledge work. We present the methodology used to create these
scenarios (Sect. 4.1). We chose the scenarios which illustrate the different
dimensions of an SSD: Sect. 4.2 describes example usage showing the use
of semantics on the desktop, and Sect. 4.3 shows the social dimension of an
SSD, i.e. the interaction between desktops of different users. The scenarios
give an overview of what is possible and how the SSD presents itself to the
user.

4.1 Methodology

Figure 2: NEPOMUK Personas

Deliverable D6.2.A Version 1.0 3

NEPOMUK 03.09.2007

The study of user needs regarding collaboration on the SSD is a major goal
of the NEPOMUK project. User studies were carried out in the project at the
case study partner sites, companies and research labs working in the area
of business software, biomedical research, Linux development, and manage-
ment consulting. The type of work performed varies between the case study
partners. In each of them, employees are knowledge workers, receiving, in-
terpreting and structuring information on a daily basis. The purpose of the
user studies is to understand the work environment in order to develop a SSD
that meets the knowledge workers’ needs and requirements. Forty contextual
interviews [5] and seven video brainstorming workshops [14] were performed
with employees at the different partner sites. To document the resulting user
requirements 14 personas and 40 usage scenarios [7, 8] were created, illus-
trating the user needs, desires and expectations on the SSD. Personas are
fictitious persons that represent different user groups and are always based
on data collected in user studies. A persona and a related scenario where
the persona uses the SSD represents an effective way to illustrate how the
users want the SSD to operate. Fig. 2 depicts all the personas created in
NEPOMUK.

4.2 The Semantic Dimension

A typical use of a single Semantic Desktop is to organize ones data: files,
emails, pictures, etc. Users are able to tag those information resources with
concepts from a network of ontologies. The ontologies also contain relations
(or properties, to use RDF terminology), which can be used to link informa-
tion resources on the desktop. Organizing information resources helps to find
information faster and aid users in their daily work.
When a user begins to use the Semantic Desktop, often-used concepts and
properties are already present. E.g., there are basic concepts such as Person,
Meeting or Place, and properties such as knows or located-in. We assume
useful tools, such as a geographical ontology, are already in place.
As the need arises, users extend the existing ontologies—e.g., they add con-
cepts for a particular meeting they attend or people they know, such as Execu

tive-Committee-Meeting-07/06/07, Jane-Doe or Hans-Schmidt. The follow-
ing two scenarios give examples of Semantic Desktop usage. We use two
imaginary users (personas1): Dirk, who works in a research group for some
company in Germany, and Claudia, who is the group leader and his boss. Both
Dirk and Claudia work on a project called Torque.
Dirk just got back from his holidays in Norway, where he took a lot of pic-Organizing Pictures

(Annotation) tures. Using his Semantic Desktop, he now wants to organize them, so that
he can later find the pictures he wants to easier, generate photo albums
for particular topics, etc. A lot of the important concepts probably already
exist on his desktop, such as Norway, or the cities he has visited: Oslo,
Bergen and Trondheim. Other concepts will be added by Dirk himself, such as
Holidays-in-Norway-2007 and tourist sights like Preikestolen or Holmenkollen.
Since these concepts are more than just tags, Dirk can also say things about
them, e.g., that Holidays-in-Norway-2007 was a Trip and took place in 2007,
and that Preikestolen is a Location in Norway. Dirk managed to take a pic-
ture of Prince Håkon and Princess Mette-Marit, he creates two more concepts
Håkon and Mette-Marit. There are many ways in which Dirk can link (or tag)
his pictures to the relevant concepts—however, part of the Semantic Desktop
are intuitive user interfaces, which hide most of the intricacies that go on under

1Within the NEPOMUK project, these personas were created by distilling typical users from a
series of interviews and evaluations with our use-case partners.

Deliverable D6.2.A Version 1.0 4

NEPOMUK 03.09.2007

the hood from the user. E.g., Dirk might have an application that shows all the
concepts that he is interested in in the form of a tag cloud. Linking the pictures
would then simply require him to drag them onto the desired concept in the
cloud.
Later, Dirk finds out that he has to go on a business trip: a conference in Oslo.Planning a Trip (Context)
The Semantic Desktop assists him in planning and organizing this trip, through
the notion of context. Dirk creates a new Trip object Trip-to-OOC2007-Oslo
and tells his desktop that he is now in the context of this trip. This means
that everything he does from this moment on will be interpreted as happen-
ing in that context, until he quits the context again. He books a flight in his
Web browser, the destination field is automatically filled with “Oslo”, similarly
the departure field. When he books a hotel room, he is assisted similarly.
Dirk receives a number of confirmation emails, such as the flight itinerary and
booking confirmation for his hotel. These emails and their attachments are
automatically associated as belonging to the Trip-to-OOC2007-Oslo context,
so that Dirk can easily find them again later. Once he knows his exact flight
dates and where his hotel will be, he enters this information into his calendar,
which is also context-aware and remembers that these entries belong to Dirk’s
trip.

4.3 The Social Dimension

Users will have a lot of benefit from just using the Semantic Desktop on their
own. However, by connecting to others, a number of additional possibilities
arise.
In the previous scenario, Dirk found out he had to go on a business trip. In fact,Assigning Tasks in a

Group (Social Interaction) he found out about this because he was notified by his boss Claudia, who also
uses a Semantic Desktop. Claudia plans to travel to the OOC2007 conference
in Oslo to present a research prototype her group has developed as part of the
Torque project. She doesn’t want to travel alone, so she first needs to find out
which of her group members are free when the conference is on. Through the
network of Social Semantic Desktops, her calendar application has access to
the calendars (or parts of them) of all her contacts. She can ask the calen-
dar to give her a list of all people in her group (My-Research-Group) who are
working on the Torque project (Torque-Project) and are free when OOC2007
is on. She finds out that Dirk is free at the desired time. Just like Dirk in the
previous scenario, she creates a Trip-to-OOC2007-Oslo object and makes it
her current context. She also links the trip to the Torque-Project. Now, she
creates a new Task object Dirk-Prepare-Trip-To-OOC2007, with a subtask
Dirk-Prepare-Presentation-Slides and sends an email to Dirk, asking him
to accompany her to the conference, book flights and hotel rooms, and pre-
pare slides for the conference presentation. Her email and the task will of
course be automatically linked to the proper context. Also, in this version of
the scenario, Dirk no longer has to create the Trip-to-OOC2007-Oslo object
himself—instead, it will be added to his Semantic Desktop automatically when
he gets Claudia’s mail.

5 Functionalities

In order to integrate the requirements expressed in the scenarios and other
materials produced in the case studies we need to use a more formal ap-
proach. All the material was processed by a group of members of the project

Deliverable D6.2.A Version 1.0 5

NEPOMUK 03.09.2007

Desktop Annotation, Offline access, Desktop sharing,
Resource management, Application integra-
tion, Notification management

Search Search, Find related items

Social Social interaction, Resource sharing, Access
rights management, Publish/Subscribe, User
group management

Profiling Training, Tailor, Trust, Logging

Data Analysis Reasoning, Keyword extraction, Sorting and
grouping

Table 1: Functionalities of the Social Semantic Desktop.

coming from different areas: developers, case study partners, architects and
usability designers. The results of the Lugano Functionality Workshop is an
homogeneous list of functionalities required to satisfy the scenarios. For each
functionality, we provide a name, a short textual description, inputs, outputs
and the relevant material in which this functionality was discovered. We grouped
these in five categories as shown in Table 1.
At the desktop level, the semantic functionality common to most applications isDesktop
the ability to add information about any resource. Annotation comprises the
facilities to store and retrieve semantic relations about anything on the desk-
top. When Dirk annotates his photos from his trip, he does it from his most
favorite photo application (such as Picasa or iPhoto), the annotations are then
stored by the SSD. We name this functionality Application integration; ap-
plications interact with the SSD by means of different services. When Dirk
got notified about the trip to Oslo, this was an example of Notification man-
agement. The SSD handles different kinds of mechanisms such as emails,
syndication, or text messaging. When Dirk creates a new concept or even
a new file on the SSD, the application he uses interacts with the Resource
management facilities of the SSD, creating the needed semantics according
to the current context and setup. Some of the information Dirk needs when
booking his trip are stored on Claudia’s desktop. If she is not connected to the
network, the Offline access facility exports the relevant information to another
desktop. Desktop sharing is the ability for different users of the SSD to work
on the same resources. Claudia might write a report of the trip together with
Dirk: the resource management is done on Dirk’s desktop, but Claudia can
access and edit it remotely.
The semantic network created on the desktop enables a whole new way ofSearch
searching on the SSD. Search uses the semantic relations as well as social
relations to retrieve relevant items. Once an item is found a user can also find
related items. For instance, when Dirk searches for a flight to Oslo, he can
also search for related items and may find documents related to the upcoming
meeting.
The SSD provides different means of Social interaction, e.g., the embeddingSocial
of semantic information in emails or text messaging, or the ability to annotate
another user’s resources. Some desktop level functionalities such as desk-
top sharing and offline access require the SSD to enable Resource sharing.
When Dirk and Claudia collaborate on the trip’s report, Dirk might make it ac-
cessible to the whole group by adding it to a shared information space. When
sharing resources or information on the network, the Access rights manage-

Deliverable D6.2.A Version 1.0 6

NEPOMUK 03.09.2007

ment of the SSD provides ways to define specific rights relations between
users, groups and resources. The SSD’s User group management system
makes it easy for the rapid creation of new groups from a list of users. These
groups can then be used to modify access rights or for resource sharing in a
shared information space. E.g., some of Dirk’s friends may have subscribed to
get notifications of new pictures that Dirk annotates and makes available. The
Publish/Subscribe mechanism of the SSD facilitates the creation of feeds of
relevant information.
If enabled, the Logging functionality of SSD logs user activity, which helpsProfiling
to detect the current user’s context. The profiling of the SSD can be done
automatically by Training: the SSD learns to predict the user’s behavior. The
user can still Tailor the SSD’s intelligent behaviors: some learned contexts can
become irrelevant and may need to be re-adapted or removed. The notion of
Trust on the SSD between people or information sources is also a result of the
profiling of the desktop. Dirk might define that he trusts Claudia’s information,
or Claudia’s SSD might learn that Dirk is a trustworthy source of information
regarding the Torque project.
To support the training behaviors of the SSD or querying related items, theData Analysis
SSD provides different data analysis mechanisms such as Reasoning. For
instance, when Dirk tags a picture with Preikestolen and Norway, the SSD
may infer that Preikestolen is in Norway. This information can later be reused
for search. Sorting and grouping supports applications that perform search.
The SSD returns items from many sources and people; sorts and groups these
items regarding different criteria, using the semantics defined on these re-
sources. The Keyword extraction from resources such as text resources is
useful for automatically tagging or summarizing.

6 Architecture

In this section we introduce the reference architecture for a SSD. Some key
aspects of the architecture are:

• The architecture is middleware-based as a middleware approach sup-
ports integration of components;

• The architecture is service-oriented to support the integration of inde-
pendent new components based on standard communication techniques;

• The architecture is based on ontologies to support the use of semantic
web technologies.

The architecture reflects the two aspects of the scenarios introduced in Sect. 4,
i.e., the semantic (which can operate on a single desktop) and the social as-
pect (which is relevant in a network of desktops). To cover these requirements
and the functionalities discussed in Sect. 5, the SSD is organized as a Service
Oriented Architecture (SOA). Each service has a well defined WSDL (Web
Service Definition Language) interface and is registered by the Service Reg-
istry. The social aspect of sharing resources over the network is enabled by
the peer-to-peer (P2P) infrastructure of the architecture. Fig. 3 depicts the
architecture that was developed within the NEPOMUK project and shows the
main services that contribute to the SSD. In the following we present the ser-
vices of the SSD.

Deliverable D6.2.A Version 1.0 7

NEPOMUK 03.09.2007

NEPOMUK
Semantic

Middleware

Presentation
Layer

Se
rv

ic
e

Re
gi

st
ry

Co
m

m
un

ic
at

io
n

DBUS

Web
Browser

Kn
ow

le
dg

e
W

or
kb

en
ch

Local File
Browser

Blog
Authoring Tool

Wiki

Office
Applications

Email Client

CAD Tool

...

IM Client

...

Data Services

MessagingPIMO
Service

Context
Elicitation
Local Data
Mapping

Mapping &
Alignment Data Wrapping

Text Analytics

Local Distributed

Search

Local Distributed

Storage

Task
Management

Event
Notification

Co
re

 S
er

vi
ce

s

Extensions
Community

Manager ...

Ap
pl

ic
at

io
n

Re
gi

st
ry

OSGi

SOAP

Profile Manager Identity & Access Control Manager

Figure 3: NEPOMUK Architecture

6.1 Overview

The architecture, as shown in Fig. 3, is organized on two layers. Although not
present in the figure, like current desktop systems, the desktop environment
builds on top of the Operating System core, such as the file system, kernel,
and network environment. On the SSD the desktop environment is pooled in
the Social Semantic Desktop Middleware Layer (SSD Middleware). The SSD
Middleware groups the services of the SSD to be used by the Presentation
Layer, which provides the user with SSD enabled applications that take ad-
vantages of the functionalities of the SSD.
The SSD is made up f individual desktops, which are organized in a P2P fash-
ion. To support the communication between the peers, the SSD Middleware
provides P2P network communication services. To enable information sharing
between individual desktops, the RDF metadata of shared resources is stored
in the distributed index of the P2P system2.
The Middleware is split into three parts: (i) the Core Services, (ii) the Exten-
sions, and (iii) the Middleware Registries (for Service and Application).
The Core Services of the SSD Middleware comprise the services providing
basic SSD functionalities. These services are accessed via the SSD Applica-
tion Programming Interface (API). If a developer wants to exploit the SSD Core
Services to build his domain-specific application, he creates an extension of
the SSD Middleware. An example of such an extension is the Task Manage-
ment which provides functionalities such as creating, delegating, and manip-
ulating tasks. Both core services and extensions are detailed in Sect. 6.4.1.
The Service Registry provides the means for registering, unregistering and

2In NEPOMUK, the P2P system is based on GridVine [2], which in turn is built on top of
P-Grid [1] and provides a distributed index query supports.

Deliverable D6.2.A Version 1.0 8

NEPOMUK 03.09.2007

discovery of the services part of the SSD Middleware. Finally, the Application
registry allows applications from the Presentation Layer to register call back
methods at the SSD Middleware if they need to be notified by SSD services,
e.g., when a message arrives and has to be displayed to the user in an Instant
Messaging Client.
The top layer of the architecture is the presentation layer. It provides a user
interface to the services provided by the SSD, and is built using the SSD API.
Many desktop applications are possible sources for resources that should be
managed by the SSD. Therefore, a desktop application can be SSD-aware
if it integrates support for the SSD Middleware. Since this assumption does
not hold for most of the current off-the-shelf applications, Nepomuk plug-ins
and add-ons may be used to enable a seamless integration with existing ap-
plications. These plugins extract email, calendar or document data and add
them as resources of the SSD. Within NEPOMUK we develop dedicated ap-
plications that make use of the SSD API directly, such as a semantic Wiki or
Blogging Tools [15].
The Knowledge Workbench is the central place to browse, query, view, and
edit resources and their metadata. In this way the Knowledge Workbench
aims to replace current file management tools such as the MS File Explorer.
If the SSD is extended by usage extensions, the application programmer also
has to provide the corresponding user interface in the Presentation Layer (e.g.,
for Task Management, Community Management, etc.).

6.2 Communication

An advantage of using a service oriented architecture is the availability of stan-
dard tools. We use the industry standard SOAP (Simple Object Access Pro-
tocol) for exchanging messages between our components. For traditional ap-
plications the names and structure of SOAP messages is specified using the
Web Service Description Language (WSDL), which in turn uses XML schema
data-types to specify the form of the objects being exchanged. However, since
the formal modeling of the target domain using ontologies is the core idea
of a Semantic Desktop application, the best-practices for SOAs are slightly
different. In this section we will discuss some important differences from a
traditional SOA system.3 Basing a system architecture on underlying domain
ontologies is similar in nature to Model Driven Architectures (MDA)4. However,
on the SSD, ontologies take the place of UML models.

6.2.1 Working with RDF

As described in [20], we invested substantial effort into the modeling of our
domains as ontologies in a formal language. These ontologies give us a very
powerful and flexible modeling language, although the structure of instances
of such ontologies at first sight seem much more constrained than complex
XML schema data-types, the flexibility of RDF introduces some additional re-
quirements for developers of components that should handle RDF instances:

• The structure of the RDF instances received may not be fully known at
design time. This means one must take care that the code does not

3Here, we make the assumption that a modern object-oriented programming language like
Java will be used for implementation, but observations and solutions are equally valid for most
other languages.

4MDA: http://www.omg.org/mda/

Deliverable D6.2.A Version 1.0 9

NEPOMUK 03.09.2007

break when encountering unknown properties in the data, and these
unknown properties must be preserved. In general, programming ser-
vices for the Semantic Desktop is like programming services for the web,
rather than for traditional desktop applications, and one should follow the
general rule of web-programming: “Be strict in what you send and toler-
ant in what you receive.”

• Conversely, other services might not be aware of all the properties the
local service uses. Therefore each service must be programmed to be
tolerant of missing data and do their best with the data that was provided.

6.2.2 Passing Instances in Messages

Normally, when using SOAP in connection with WSDL and XML schema for
data modeling, some mapping is used that will convert the XML schema def-
inition to class definitions in the programming language of choice. Stubs and
skeletons are generated for the service themselves, so that the details of com-
munication are hidden. Programming against remote services is then indistin-
guishable from programming against a local object. However, when using
services that pass instances for which the structure is defined by ontologies,
the mapping is not so straight forward. We identify three alternatives for pro-
gramming web services where parameters are instances of ontology:

1. Starting with the ontologies, a number of tools5 can be used to create a
set of Java classes from the ontologies. The service interface is written
using parameters of these types, and another tool is used to generate
the WSDL and associated XML schema types from these. By sharing
the URIs of the concepts in the ontologies with the URIs of the XML
schema types, the semantics of messages is retained. The benefit of
this approach is that much of the SOAP technology is retained, exist-
ing tools may be reused. Developers not familiar with Semantic Web
technology, find that developing and using these services is unchanged
from a normal Java environment. The main problem with this approach
comes from the fact that ontologies are in general more dynamic than
Java class definitions. In particular, we expect the personal information
models to change frequently. This approach requires a complete re-run
of the whole tool chain and a recompile of the system when an ontology
changes, as well as introducing some constraints on the ontologies.

2. On the other end of the spectrum it is possible to bypass the parame-
ter passing of SOAP all together, and rely more on the Semantic Web
technology. Each method offered by a service will take a single RDF
document (possibly including several named-graphs), and all the details
about the message are given in these RDF graphs. An additional on-
tology for messages and parameters must be constructed, and some
named-graph aware serialization (e.g., TriG or TriX6) of RDF is used to
construct the XML SOAP messages. This approach was, for instance,
used in the SmartWeb project.7 The benefit of this approach is that the
effort that has gone into modeling the ontologies is not duplicated for
modeling objects. Also, the full expressivity of RDF may be used when
modeling, as it is not required that the instances fit into another repre-
sentation. The backside to this flexibility is that it is significantly harder to

5RDFReactor: http://wiki.ontoworld.org/wiki/RDFReactor; RDF2Java: http://

rdf2java.opendfki.de; Elmo: http://openrdf.org, etc.
6TriG/TriX: http://www.w3.org/2004/03/trix/
7SmartWeb: http://www.smartweb-project.de/

Deliverable D6.2.A Version 1.0 10

NEPOMUK 03.09.2007

program with RDF graphs than with simple Java objects, and both ser-
vice developers and consumers need good knowledge about RDF. One
can of course envisage new tools that facilitate programming with such
RDF messages, but since all the interesting details are hidden inside the
RDF parameter, existing SOAP tools for development or debugging are
no longer useful.

3. Finally, a hybrid approach of the two methods is possible. Here each
method retains multiple arguments, but each argument is represented
by an RDF resource. We envisage two possibilities to realize this: either
each parameter is given as a (named-graph-uri, uri) tuple pointing into
an RDF document given as a special parameter; or, alternatively, each
parameter is in itself an RDF graph plus the URI of the actual param-
eter (each RDF graph may contain several resources). The benefit of
this method is that the changes in the ontology do no longer require a
recompile of the system, while at the same time allowing slightly more
compatibility with existing SOAP tools. The problem with this method re-
mains that both client and server programmers need in-depth knowledge
of RDF and the ontologies being used.

Regardless of which of the three alternatives one chooses, it remains an im-
portant issue to make sure that the formal description of the services (i.e., the
WSDL+XML Schema definitions) remains semantically correct and retains the
pointers to the ontology concepts which the parameters represent. As men-
tioned, the first approach is handled by well chosen URIs for the XMLSchema
types. The second and third approaches the parameters have the form of
simple string objects in both the WSDL definition and the SOAP messages,
since the RDF serialization is represented as a string. However, both ver-
sions of WSDL available at the time of writing allow extensions to the WSDL
format itself,8 and additional constraints on the type or form of the RDF in-
stances contained inside the string parameters may be specified here. This is
the approach taken by the Semantic Annotation for WSDL and XML Schema
(SAWSDL) working group9, and the NEPOMUK project uses this standard.

6.3 NEPOMUK Ontologies

In Section 6 we introduced the service oriented nature of the NEPOMUK
SSD. In the next sections we discuss in detail the two layers we grouped the
services in the NEPOMUK Semantic Middleware depicted in Fig. 3: (1) the
core services and (2) the extensions. Before we detail on these two layers, we
recapitulate the layered structure of the NEPOMUK ontology pyramid intro-
duced by the NEPOMUK Ontology task force and discuss in which way the
ontology pyramid is related to the layered NEPOMUK architecture.
Ontologies form a central pillar in Semantic Desktop systems, as they are
used to model the environment and domain of the applications. The common
definition of an ontology is “a formal, explicit specification of a shared concep-
tualization” [11].
We differentiate between four levels of ontologies for the SSD: Representa-
tional, Upper-Level, Mid-Level and Domain. The main motivation for this lay-
ering is that ontologies at the foundational levels are more stable, reducing the
maintenance effort for systems committed to use them. A core principle of the
Semantic Desktop is that ontologies are used for personal knowledge man-

8Language Extensibility in WSDL1: http://www.w3.org/TR/wsdl\#_language and in
WSDL2: http://www.w3.org/TR/wsdl20/\#language-extensibility

9SAWSDL: http://www.w3.org/TR/sawsdl/

Deliverable D6.2.A Version 1.0 11

NEPOMUK 03.09.2007

agement. Each user is free to create new concepts or modify existing ones
for his Personal Information Model. This modeling takes place on the domain-
ontology level, but the user is of course free to copy concepts from the other
layers and modify them to fit his or hers own needs. In order of decreasing
generality and stability the four layers are:

All Concepts a User of the Semantic Desktop deals with

All Concepts an Application Programmer of the Semantic Desktop deals with

RDF

RDFS

NRL

NAO NGM NIE

PIMO
Foundational

Mid-level

Personal-Level

Upper-Level Layer

Lower-Level Layer

Representational Layer

NEPOMUK Ontologies Pyramid

Figure 4: Nepomuk Ontology Pyramid

Representational ontologies (i.e., ontology definition languages) define the vo-Representation(al)
Ontology cabulary with which the other ontologies are represented; examples are RDFS

and OWL. The relationship of a representational ontology to the other ontolo-
gies is quite special: while upper-level ontologies generalize mid-level ontolo-
gies, which in turn generalize domain ontologies, all these ontologies can be
understood as instances of the representational ontology. Concepts that might
occur in the Representional Ontology level include: classes, properties, con-
straints, etc.
“An upper ontology [...] is a high-level, domain-independent ontology, provid-Upper-Level Ontology
ing a framework by which disparate systems may utilize a common knowledge
base and from which more domain-specific ontologies may be derived. The
concepts expressed in such an ontology are intended to be basic and univer-
sal concepts to ensure generality and expressivity for a wide area of domains.
An upper ontology is often characterized as representing common sense con-
cepts, i.e., those that are basic for human understanding of the world. Thus,
an upper ontology is limited to concepts that are meta, generic, abstract and
philosophical. Standard upper ontologies are also sometimes referred to as
foundational ontologies or universal ontologies.” [19] In the upper-level ontol-
ogy you will find concepts like: Person, Organization, Event, Time, Location,
Collection, etc.
“A mid-level ontology serves as a bridge between abstract concepts definedMid-Level Ontology
in the upper ontology and low-level domain specific concepts specified in a
domain ontology. While ontologies may be mapped to one another at any
level, the mid-level and upper ontologies are intended to provide a mechanism
to make this mapping of concepts across domains easier. Mid-level ontologies

Deliverable D6.2.A Version 1.0 12

NEPOMUK 03.09.2007

may provide more concrete representations of abstract concepts found in the
upper ontology. These commonly used ontologies are sometimes referred to
as utility ontologies.” [19] The mid-level ontologies may include concepts such
as: Company, Employer, Employee, Meeting, etc.
“A domain ontology specifies concepts particular to a domain of interest andDomain Ontology
represents those concepts and their relationships from a domain specific per-
spective. While the same concept may exist in multiple domains, the repre-
sentations may widely vary due to the differing domain contexts and assump-
tions. Domain ontologies may be composed by importing mid-level ontolo-
gies. They may also extend concepts defined in mid-level or upper ontologies.
Reusing well established ontologies in the development of a domain ontology
allows one to take advantage of the semantic richness of the relevant con-
cepts and logic already built into the reused ontology. The intended use of
upper ontologies is for key concepts expressed in a domain ontology to be
derived from, or mapped to, concepts in an upper-level ontology. Mid-level
ontologies may be used in the mapping as well. In this way ontologies may
provide a web of meaning with semantic decomposition of concepts. Using
common mid-level and upper ontologies is intended to ease the process of
integrating or mapping domain ontologies.” [19] Domain ontologies consist
of concepts like: Group Leader, Software Engineer, Executive Committee

Meeting, Business Trip, Conference, etc.
Fig. 4 shows how these four layers relate to the four ontologies created and
used in the NEPOMUK Project. We were hesitant to make use of OWL for the
representational ontology level in NEPOMUK. OWL assumes an open-world
view of all data, and this seems inappropriate for the local Semantic Desktop.
Instead, we would like to be able to combine a closed-world view of the local
desktop with the open-world of the network of Semantic Desktops or even with
the Web itself. To achieve these goals we developed the NEPOMUK Repre-
sentational Language [20] (NRL), which defines an extension to the semantics
offered by RDF and RDFS; the main contribution of NRL is the formalization
of the semantics of named graphs10. NRL allows multiple semantics (such as
open and closed world) to coexist in the same application, by allowing each
named graph to have separate semantics. The NEPOMUK Annotation On-
tology (NAO) is a basic schema for describing annotations of resources, this
is essentially a formalization of the tagging paradigm of Web 2.0 applications.
A specialized part of NAO is the NEPOMUK Graph Metadata schema (NGM)
which allows the description of named graphs, defining meta-data properties
such as the author, modification dates and version data.
Finally, the NEPOMUK Information Elements ontology (NIE) contains classes
and properties for describing objects found on the traditional desktop, such as
files (Word documents, images, PDFs), address book entries, emails, etc. NIE
is based on existing formats for file meta-data such as EXIF for image meta-
data, MPEG7 for multimedia annotations, ID3 for music files, iCal, and others.

6.4 NEPOMUK Middleware

Similar to the ontology pyramid, the NEPOMUK Semantic Middleware is orga-
nized in layers. However, opposite to ontology engineering, where the levels
are organized top down, in Software Engineering layered architectures are
built bottom up. Lower layers provide generic services to the layers above.
The higher layers rely on these services and combine them to more complex
and problem specific services, which in turn are offered to layers above or via
the user interface of the applications to the user.

10http://www.semanticdesktop.org/ontologies/nrl/

Deliverable D6.2.A Version 1.0 13

NEPOMUK 03.09.2007

In Fig. 3 we already introduced the service oriented NEPOMUK architecture.
Within the NEPOMUK Semantic Middleware, the services are organized into
the Core Services and the Extensions. The core services make up the basic
functionalities of the SSD. The extensions take advantage of these core ser-
vices and combine them into complex and user specific services such as task
management or community management.
Since the core services are dealing with the basic functionality of the SSD,
these services are operating on the more general concepts defined in the
Upper-Level and Midd-Level Ontology. On the other hand, the Extensions
deal with domain specific concepts, which are defined in a Domain Ontology.
This results in a situation where lower layers of the architectures deal with the
upper-level concepts of the ontology pyramid and vice-versa.

6.4.1 Services

A basic feature of the SSD is the possibility to store semantic meta-data and
to query the stored data. Since we are talking about the Social Semantic
Desktop, users are able to share meta-data over the network. The meta-data
we handle are distributed over the computers of individual users. To enable
this social aspect the Data Services are based on a peer-to-peer network.
The Data Services are responsible to control the insertion, modification, dele-
tion, and retrieval of resources on the SSD. A resource can be a user, a
document, a calendar entry, an email, and so on. It provides a service to
store the RDF meta-data in the Local Storage. Resources and their RDF de-
scriptions can either be manually added to the SSD, or the Data Wrapper or
Text Analysis service extract the information from desktop applications such
as email clients or calendars. Data Wrappers are used to extract metadata
form structured data sources (e.g., email headers, calendar entries, etc.). In
NEPOMUK, data wrappers are implemented based on Aperture [3]. The Text
Analysis service is used to extract metadata from unformatted text (e.g., email
bodies, word processing documents, etc.). For local queries and for offline
working the RDF metadata is stored in the Local Storage. If a resource is
shared with other users in an information space, the meta-data is also up-
loaded to the distributed index of the underlying peer-to-peer system. The
Search service can either issue a local search in the local storage or a dis-
tributed search in the underlying peer-to-peer system.
Before new metadata is added to the repository, we check whether this meta-
data describes resources that are already instantiated (i.e., a URI has been as-
signed) in the RDF repository. In this case, the URI of the resource is reused,
rather then creating a new one. This process is known as information integra-
tion [4]. The Local Data Mapper service takes over this responsibility in the
SSD Middleware. E.g., the Data Wrapping service extracts contact information
from the address book and stores the metadata in the repository. Since this
is the first time information about the contacts is added to the RDF repository,
a new URI is generated for each person. If later the Data Wrapping service
extracts information from an email header, the Local Data Mapping service
is responsible to lookup whether information about the sender of the email is
already in the repository and reuse the corresponding URI instead of creating
a new one [18].
Ideally only one ontology exists for a domain of interest such as contact data,
calendar events. In reality, however, we are faced with many ontologies of
(partly) overlapping domains (e.g., FOAF and vCard for contact data, or dif-
ferent personal information models). Since individual users share information
over the SSD, it is likely they use different ontologies for their annotations even

Deliverable D6.2.A Version 1.0 14

NEPOMUK 03.09.2007

when talking about similar domains. The SSD Middleware provides a Mapping
& Alignment service that is used by other Middleware services and services
in higher layers to translate RDF graphs from a source ontology to a target
ontology.
The SSD Middleware logs the actions a user performs on the resources on
his desktop. The logged data is stored in the Local Storage and analyzed by
the Context Elicitation service to capture the current working context of the
user. The context is used to adapt the user interface or to suggest meaningful
annotations to the user, depending on the task they are currently working on.
As discussed in Sect. 6, the services on the SSD use RDF to exchange data.
Therefore, services need the capability to generate and process RDF graphs.
However, the handling of RDF graphs is more difficult than the instantiation
and manipulation of objects in an object-oriented programming language. To
simplify the handling of the RDF graphs, the PIMO Service11 provides an easy
way to create and manipulate concepts in RDF graphs.
The Event Notification service enables other services or human users to reg-
ister their interest in a change of the shared information space. For example
a user wants to be notified when the status of a certain report changes from
"draft" to "final" or several actions have to be triggered in the local task man-
agement extension when a new task has been assigned to the user. Ideally
such a service would be based on a fully fledged publish/subscribe system
that is build on top of a distributed event based system. In NEPOMUK we
currently do not plan to implement a RDF enabled event based system. In-
stead we are following a simpler polling strategy. The Event Notification ser-
vice allows for registering SPARQL12 queries that describe the kind of change
in the shared information space that should be observed. In addition a call-
back method is registered that should be triggered when the change has been
detected. The Event Notification service checks the registered notification re-
quests (subscriptions) in regular time intervals or on request.
The Messaging service provides means to exchange messages between NEPO-
MUK Desktops over the network. Other services can register a call-back
method and the type of message they are interested in. There will not be
a fixed set of allowed message types. We think of message types for exten-
sions to enable task management services to directly communicate with each
other. A different message type can be used to build an instant messaging
service. The Messaging service will be implemented on top of the Jabber
Instant Messaging and Presence technology [16].
The Application Registry allows applications from the Presentation Layer to
register call-back methods at the SSD Middleware if they need to be notified
by SSD services, e.g., when a message arrives and has to be displayed to the
user in an Instant Messaging Client.
The realization of the Profile Management and the Identity and Access Control
Manager Services is still under discussion. Sect. 7 summarizes the current
state of the discussion and give an outlook on possible solutions.

6.4.2 Extensions

The Core Services of the SSD Middleware provide basic functionalities of the
SSD. These services are accessed via WSDL interfaces of the individual ser-
vices. The set of all WSDL interfaces of the Core Services is the NEPOMUK
Middleware API. If a developer wants to exploit the SSD Core Services to build

11PIMO: Personal Information Model - Ontology for personal information management
12SPARQL: SPARQL Protocol and RDF Query Language - an RDF query language

Deliverable D6.2.A Version 1.0 15

NEPOMUK 03.09.2007

his domain-specific application, he creates an Extension of the Middleware.
Within the NEPOMUK project, the case study partners provide us with use
cases for Extensions. SAP builds an Extension to implement the Task Man-
agement System. This Extension provides functionalities such as creating,
delegating, and manipulating of tasks. The domain ontology for this case
study is the Task Management Ontology (TMO) introduced in D3.1. Mandriva
builds an Extension to develop the Help Desk Community introduced in D11.1
and TMI bases their knowledge management business cases as Extension,
as discussed in D9.1 on the Core Service.

6.5 Implemented components

The NEPOMUK architecture integrates with existing components developed
by the NEPOMUK partners. In this section we briefly present the components
and map them to services of the NEPOMUK Middleware. We further give
references to further information about each component.
The Distributed Search and Storage component allows users to share andDistributed Storage and

Search locate content in the NEPOMUK community. It is based on P-Grid [1], a
structured P2P overlay network for search and storage utilities, which are fur-
ther enhanced with semantics via GridVine [2], to offer a distributed index with
RDQL query support.
The component provides four services that are used by other services in the
middleware: (1) The distributed index is used to advertise metadata that is
shared between NEPOMUK desktops, (2) the distributed storage that repli-
cates local resources to remote desktops in order to increase their availability
even when the owner is unavailable, (3) the distributed search to query the
distributed index for a range of results; and (4) the lookup service can be used
to find out the IP address when the peer-ID is known. Since every NEPOMUK
desktop has its own ID this service can be used to retrieve the IP address for
a direct file transfer or communication session.
Detailed information:

• D4.1 Distributed Search System - Basic Infrastructure: Dec 2006 (EPFL,
L3S) - submitted and accepted

• http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main/Comp

%2DDistributedIndex

• http://dev.nepomuk.semanticdesktop.org/wiki/sp/Distributed

Search

The RDFRepository is the central metadata and structured data store in Nepo-Local Repository
muk. It contains all information from the filesystem from the DataWrapper,
ontologies, and the Personal Information Model (PIMO) of the user. All Data
that Nepomuk handles locally should be kept here, to benefit most from data
integration.
All Desktop applications can use the RdfRepository database to locally share
metadata about resources within a single NEPOMUK desktop, and through
this sharing it is possible to integrate them on the level of data and ontologies.
Applications can query the repository and provide novel interlinked views on
the user’s information that are not possible on current desktop systems.
Detailed information:

• http://dev.nepomuk.semanticdesktop.org/wiki/RdfRepository

Deliverable D6.2.A Version 1.0 16

NEPOMUK 03.09.2007

The DataWrapper component wraps data from native applications in the pre-Data Wrapper
sentation layer, such as files in the filesystem or emails in an email client.
Datawrappers extracts the data from various applications, converts the data to
RDF and stores it in the RdfRepository. Currently the data-wrapper does not
offer the functionality of writing data back into the applications. The DataWrap-
per can be configured to crawl (i.e. access all datasources) at a given interval,
thus ensuring that the data in the RdfRepostiry remains up to date with the
existing desktop data.
In the NEPOMUK there are two data wrapper components under develop-
ment: Beagle++ and gnowsis/Aperture.
Detailed information:

• http://dev.nepomuk.semanticdesktop.org/wiki/DataWrapper

• http://dev.nepomuk.semanticdesktop.org/wiki/ApertureDataW

rapper

• http://dev.nepomuk.semanticdesktop.org/wiki/BeagleDataWra

pper

The text analytics component is performing a process of information extractionText Analytics
whose goal is to automatically extract structured or semistructured information
from documents on the desktop (e.g. emails, research papers, meeting notes).
The text analytics component under development within NEPOMUK supports
at the moment the following features: i) named entity recognition, ii) controlled
language processing, iii) keyword extraction and iv) speech act detection.
Detailed information:

• http://dev.nepomuk.semanticdesktop.org/wiki/TextAnalytics

The PimoService implements commonly used methods to access personalPIMO Service
data structures in the RdfRepository. The PimoService allows easy creation
of new classes, new instances, and ensures that the user’s PIMO conforms to
the NEPOMUK ontologies and that it remains consistent with regard to NRL.
Detailed information:

• http://dev.nepomuk.semanticdesktop.org/wiki/PimoService

The LocalDataAlignment analyzes data crawled from resources (from your e-Local Data Mapping
mails or files) to create and annotate instances in the PIMO ontology. It aligns
locally crawled data with data stored in the local PIMO of the user, for example
it carries out tasks such as adding Dirk as author of the PDF document on
your harddrive or Claudia as the person who sent you e-mail X. Also, it cares
that only one Person named Dirk exists in the PIMO at one time and that
any occurrence of this topic in your documents is matched to this Dirk. The
suggestions are confirmed or rejected in a user interface. As a result, the
context of persons, places, projects is enriched.
Detailed information:

• http://dev.nepomuk.semanticdesktop.org/wiki/LocalDataAlign

ment

This component consists of a set of interfaces and services to allow the ob-Context Elicitation
servation of and reasoning about a user’s current work context. This includes
plugins for detecting the current workflow of the user by observing the opera-
tions the user does. When integrated into the semantic desktop, these plugins
will allow to elicitate knowledge about the current goals of the user which in
turn is useful for tuning information structuring, storage, and retrieval services.
Detailed information:

Deliverable D6.2.A Version 1.0 17

NEPOMUK 03.09.2007

• http://dev.nepomuk.semanticdesktop.org/wiki/UserWorkContext

6.6 Usage Examples of Core Services by Extensions and Applications

So far we introduced the services and extension of the NEPOMUK Middle-
ware in general. In this section we use two examples to illustrate the use of the
services. The Task Management example describes the implementation of an
extension, the application to application communication example presents an
application using NEPOMUK services.

6.6.1 Example: Task Management

In this example we discuss the services involved in the creation, delegation,
and completion of a task. We present how the Task Management Extension
uses the Core Services and the TMO domain ontology to provide the domain
specific functionality. The Extension is presented to the user via a user inter-
face.
A user, Claudia, creates a new task. The Task Management extension is
responsible to create the metadata describing the task in the local repository of
the NEPOMUK Middleware. The task specific metadata uses the vocabulary
defined by the TMO ontology and contains information such as the name,
the current state of the task, the creation date, the scheduled end date, the
consumed time so far, the role of the involved co-workers, whether the task is
a subtask of another task, and so on. Since the extension frequently has to
instantiate and modify instances of the TMO ontology the extension provides
helper classes to ease the manipulation of the TMO concepts.
When Claudia created the task, it is assigned to her co-worker Dirk. This step
involves several services. The metadata of the task is modified in the local
repository to reflect the new role distribution. Since the task is no longer a
private issue, the metadata is made available in the distributed index of the
peer-to-peer system and the according access rights are set. Dirk’s NEPO-
MUK desktop is informed that there is a new task he is supposed to take care
of. This is done via the Messaging System. For the exchange of messages
between the Task Management Extensions of different NEPOMUK desktops
the task management message type is used. Each extension defines its own
message types. To inform the Messaging system that the extension is re-
sponsible to handle messages of the type task management, the extension
registers the message type and the call-back method that should be called
when a message of this type arrives. When the message of the new task as-
signment arrives at Dirk’s desktop, the metadata of the task is stored in Dirk’s
local repository and a message about the new tasked is displayed to him.
Since Claudia is interested in the progress of the task, she uses the Event
Notification service to stay up-to-date. She places a subscription to be notified
about every change of the metadata that is related to this task. For example,
a more detailed subscription informs her when a task related document state
changes from “draft” to “final”. The subscriptions are internally represented as
SPARQL queries. The subscriptions are checked in regular time intervals or
on user or service request. If a subscription matches, the registered call-back
method is called.
Subscription can be used for both, the user notification and the coordination of
actions within an extension. An example of a service coordination action is the
handling of the task end. The extension registers a subscription to the change

Deliverable D6.2.A Version 1.0 18

NEPOMUK 03.09.2007

of the task state “finished”. The registered call-back method is then responsi-
ble to issue the required actions. A message sent via the Messaging service
informs Claudia that the task is finished. A subscription which observes the
scheduled task end date and task progress issues actions when the task is
delayed.

6.6.2 Example: Application to Application Communication

In this example show how applications take advantages of the uses of Seman-
tic Web technologies. A user writes a letter in his word processor (e.g., MS
Word) and wants to add the receiver’s address. The addresses are stored in
the user’s address book application. If both applications support the process-
ing of RDF metadata, this data transfer is done with the help of the operating
system clipboard.
The user selects the receiver’s address in the address book and copies it to the
clipboard. The RDF representation of the address is stored in the temporary
storage to the operating system clipboard. Dirk switches back to the word
processor and pastes the clipboard content. The word processor recognizes
that the data in the the clipboard is an address and formats the data to fit the
letter document template.
Over the years, the Semantic Web community defined numerous ontologies
for various domains. In many cases more than one ontology is found for sim-
ilar or overlapping domains. There are three different ontologies [13, 12, 22]
aiming to model the vCard RFC2426 text format [9] as an ontology. Other
ontologies such as FOAF [10] or the Semantic Web Research Community
ontology (SWRC) [21] provide concepts to represent contact data.
If the target application (in our example the word processor) is able to process
domain metadata (the addresses) and does not support the ontology vocab-
ulary provided by the temporal storage of the clipboard, it uses the Mapping
and Alignment service from the NEPOMUK Semantic Middleware to trans-
form the the data into an ontology the target application is able to understand.
A detailed discussion of the operation of such a Semantic Clipboard can be
found in [17].

7 Security

Although the NEPOMUK architecture has an advanced status based on strong
foundations, as presented until this point, the security is still in an early stage.
We performed major steps towards modeling the security needs on the SSD
and mapping these needs to possible solutions. Thus, in the following we
present a summary of the results achieved so far, results which will be part of
the Roman Candle milestone.

7.1 Security requirements

The first step performed was to collect the functional requirements in terms of
user identity and access rights management in NEPOMUK. These basically
address the users’ needs regarding:

User identity – Identities might be used in different contexts, like: defining
nominative access rights to a resource, delegating a task, or managing

Deliverable D6.2.A Version 1.0 19

NEPOMUK 03.09.2007

the reputation of a person in a social network. E.g.: defining nominative
access rights to a resource – when a user decides to share a document,
he might choose to share it with only a list of users; he should be able
to pick the exact identity of the user in an address book, or any facility
where he manages his contacts.

Groups – Groups should be pre-defined in order to rationalize access rights
management, mainly in the context of enterprise projects and/or tasks
management.

Access rights – Access rights might be used to share a resource, or dele-
gate a task. E.g.: sharing a resource – access rights are managed in
order to precise with whom the user wants to share a resource. Ac-
cording to the requirements, access rights should handle the following
operations: read, read meta-data only, write, comment, search. The
granularity should be on the level of a semantic tag. This encourages
sharing as much as possible without sharing private information. Also,
the default access rights should propagate according to the knowledge
hierarchy (e.g., account > folder > document > tag).

Roles – Roles are used in order to facilitate recurrent access rights manage-
ment. They provide access rights template on pre-defined resource. In
other terms, this corresponds to access rights patterns.

As it can be observed, various contexts were envisaged, some of them within
an organization (e.g. knowledge management organisation in a consulting
company, or task management in a company). Nevertheless, NEPOMUK per-
sonal knowledge management capabilities lead to consider the personal se-
mantic desktop usage in the open community of the Web itself. A rapid review
of the needs in this context leads to the following classification regarding data
and metadata: (i) Private: I don’t want to share the data; (ii) Shared with
named users: I want to share this data with particular persons; (iii) Shared
with a group: I need to share the data with a team; (iv) Shared with a com-
munity: All the P2P community has access to the information; (v) Shared
anonymously: I want to share the data with users, groups, a community, but I
want to keep privacy on my identity; (vi) Shared with named users with confi-
dential metadata: I want to share a data with named users, but I do not want
the meta-data of it to be accessible by anybody, any index or any semantical
value-added profiling functionnality.

7.2 Achieved terminology

As a direct result of the requirements analysis, we derived the following termi-
nology which we use in the security scenarios and the possible solutions.

Community. Community is a set of peers joining the same P2P network shar-
ing and accessing the same index. It connects identities by means of
peers and identities need a community key to participate.

User A user is an individual human being or an agent acting on behalf of a
human being. In our context, he is connected to several communities by
means of a peer. He uses several identities in order to be identified by
other users of the communities he belongs too. A user can define lists of
access rights local to a peer to customize the access to user identities
or groups.

Deliverable D6.2.A Version 1.0 20

NEPOMUK 03.09.2007

Peer A peer is a machine program accessible through an IP address and a
port. It can be used by several users, usually by only one user simulta-
neously.

User identity A user identity is defined and available centrally, and indepen-
dently from the communities. A user chooses one or several identities
to connect to a community by means of a peer. Choosing at least one
user identity is mandatory when joining a community. A user identity can
participate in several communities.

Group A group is set of user identities. Groups are used in the context of
access rights (read, write, annotate, delete) management on resources.
Members of the group need to know the group key in order to access the
remote resources.

Role A role is a template of access rights on pre-defined resources.

7.3 Security scenario example

Figure 5: NEPOMUK Security: Example of information flow

Fig. 5 presents an example of how the information flow could look like in the
case of sharing a file within a particular group.

• User 1 authenticates with community A using one of his identities. As a
result he receives the community key, which is then stored into his local
keystore. The community can have a known or empty key. By receiving
this key, a user is able to access the community’s indexes and share
public information.

• User 1 shares a file F with community A. Since he belongs to community
A, he tags file F with the Community A key.

• User 2 authenticates with the community A using one of his identities.
Again, as a result of the authentication, he can access the community’s
index and even get file F, shared by User 1.

Deliverable D6.2.A Version 1.0 21

NEPOMUK 03.09.2007

• User 1 retrieves the user IDs and groups from the central server (note:
for authentication and group management reasons we identify the need
for a central server13). User 2 can create IDs or groups. The central
server keeps a key associated to each ID or group. Only the user ID or
the group members have access to the key.

• User 1 restricts the access to his file F1 to group G. He tags file F1 with
the Community A key + the Group G key.

• User 2 belonging to group G authenticates with group G, and thus re-
ceives the group’s key. Then he can access file F1 shared by User 1
only inside this group.

7.4 Architectural implications

The security requirements influenced the NEPOMUK Architecture at two lev-
els: (i) component level, and (ii) data workflow level.
The component architecture was directly influenced by the introduction of two
additional core services (see Fig. 3), i.e. the Profile Manager and the Iden-
tity and Access Control Manager. Also, at the general level we observed the
need for a centralized point having the role of managing the overall list of
users and groups. The Identity and Access Control Manager represents an
enriched local proxy of the this central server. Its main functionality is to store
locally (and when necessary synchronize) user identities, group memberships,
access keys (for both communities and groups) and manage the access con-
trol for the shared resources. The Profile Manager represents an enriched
wrapper of the afore-mentioned component. It provides a level of functionality
closer to the user, acting in the same time also as a meeting point for some of
the social and security aspects of the Social Semantic Desktop. Examples of
functionalities would be: editing of the personal profile, management of other
profiles (based on roles, e.g. friends), assigning trust policies or defining the
shared resources. It can be observed that we’re heading towards an inter-
leaved social and security direction, where access rights will be introduced
based on the defines social networks.
The second influenced level mentioned above was the data workflow. If until
this point the communication, sharing and access of resources (for the dis-
tributed environment, i.e. the distributed index) was done in an open and
un-protected way, by implementing the security requirements, we introduced
the control of the information flow. Based on the direction of the flow, towards
the community or from the community, the P2P responsible components will
use in a transparent way the security features for enforcing restrictions on the
published resources. As an example, considering the the scenario presented
in the previous section, when User 2 will want to access file F1 shared by User
1, before releasing the file, the P2P components of User 1 will check what are
the access rights of User 2 (on User 1’s peer): group membership or personal
access rights.

8 Current Architecture Status

In this section we discuss the current state of the architecture by analysing the
coverage of the abstracted functionalities as well as the current implemented
components.

13Central but not unique, distributed as OpenID

Deliverable D6.2.A Version 1.0 22

NEPOMUK 03.09.2007

Functionalities

Informal
description of
user needs

Services

Set of formal
function

descriptions

Components

Function
implementations

* * * *

Figure 6: Relations between functionalities, services and components.

In Sect. 5 we described a list of 20 functionalities which were abstracted from
the scenarios and other materials developed at the case study partners. In
Sect. 6 we designed an architecture based on a shared understanding from
both the current implementation and the requirements. Figure 7 shows the
current coverage of the functionalities by the architecture. The functionali-
ties are specifically oriented towards the NEPOMUK middleware, we do not
consider application nor extension functionalities which would be quite numer-
ous. Underlined functionalities are currently covered by services defined in
the architecture. Some are a direct one to one relationship, such as the key-
word extraction functionality with the text analytics service. Some are more
complex, such as the resource management functionality which we consider
being covered by the data wrapping, local storage and PIMO services. Rea-
soning seems present in the context elicitation, mapping and alignment and
local data mapping; in this case, it might be interesting to assemble the rea-
soning algorithms of these services into a reasoning service that these three
services would rely on.

Se
rv

ic
e

Re
gi

st
ry

Co
m

m
un

ic
at

io
n

DBUS

Data Services

MessagingPIMO
Service

Context
Elicitation
Local Data
Mapping

Mapping &
Alignment Data Wrapping

Text Analytics

Local Distributed

Search

Local Distributed

Storage

Task
Management

Event
Notification

Co
re

 S
er

vi
ce

s

Extensions
Community

Manager ...

Ap
pl

ic
at

io
n

Re
gi

st
ry

OSGi

SOAP

Resource Sharing

Social interaction

Application Integration

AnnotationResource Management

Keyword extraction Publish subscribe

Search

Notification management

Reasoning

Offline
access

Desktop
sharing

Tailor
Training

Access rights
management

Sorting and
grouping

User group
management

Find
related
items

Trust

Logging

Figure 7: Current functionalities covered by NEPOMUK middleware architec-
ture. Circled functionalities are currently uncovered.

10 out of the 20 functionalities abstracted from the case study material are
covered by services of the current architecture. The services are implemented
by different components detailed in the previous section. Some services do
not yet have an implementation namely :

• Event Notification

• Messaging

We are currently looking at Jabber as a possible messaging implementation

Deliverable D6.2.A Version 1.0 23

NEPOMUK 03.09.2007

and protocol. Regarding the uncovered functionalities, User Group Manage-
ment, Access Rights Management will lead to services and are currently dis-
cussed and studied by the NEPOMUK security task force. Offline Access
is achievable by implementing a routine service14 which would fetch relevant
information when available, relying on the distributed storage and search. Log-
ging might be already part of the context elicitation service. Desktop Sharing
and Trust are problems larger than the focus of the NEPOMUK project and we
do not have a unifying solution. Find related items, Tailor, Training and Sorting
and grouping are intelligent services which can be built on top of the Middle-
ware Core Services and have to be investigated after the basic infrastructure
is stabile.

9 Conclusion

We presented the current state of the NEPOMUK architecture. We gave a
common terminology and described our methodology. We detailed the differ-
ent services, ontologies and technical requirements. We analysed the security
implications of the social semantic desktop. We discussed the status of the ar-
chitecture regarding the current implementation and functionalities coverage.
The main current issue is the integration of the security requirements and
the elicitation of the affected services. The development of the extensions and
case study applications must be based on the current architecture understand-
ing. The communication of this understanding as well as a critical discussion
must take place with all involved project partners.
The case study prototypes have been recently evaluated. The results of this
evaluation is valuable for the validation of certain aspects of the architecture,
such as the terminology and main structure. The architecture activity will look
at this evaluation and analyse the resulting verification of the architecture.
The next step in the definition of the architecture is to document the NEPO-
MUK application programming interface. The architecture task force will work
at describing formally the NEPOMUK Middleware services.
The communication of the architecture will take place in an upcoming architec-
ture meeting involving the main technical partners as well as in the evaluation
result workshop. The dissemination and discussion of the architecture will
help in the expected convergence towards the social semantic desktop.

14a service which runs at regular intervals

Deliverable D6.2.A Version 1.0 24

NEPOMUK 03.09.2007

References

[1] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despo-
tovic, Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt.
P-grid: a self-organizing structured p2p system. SIGMOD Record,
32(3):29–33, 2003.

[2] Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and Tim Van
Pelt. Gridvine: Building internet-scale semantic overlay networks. In 3th
International Semantic Web Conference ISWC 2004, pages 107–121.
Springer Verlag, 2004.

[3] Aperture a java framework for getting data and metadata, Last visited
March 2007. http://aperture.sourceforge.net/.

[4] S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Seman-
tic integration and query of heterogeneous information sources. Data &
Knowledge Engineering, 36(3):215–249, 2001.

[5] H Beyer and K Holtzblatt. Contextual Design ? Defining Customer-
Centered Systems. Academic Press, San Diego.

[6] I. Brunkhorst, P. A. Chirita, S. Costache, J. Gaugaz, E. Ioannou, T. Iofciu,
E. Minack, W. Nejdl, and R. Paiu. The beagle++ toolbox: Towards an
extendable desktop search architecture. Technical report, L3S Research
Centre, Hannover, Germany, 2006.

[7] Alan Cooper. The Inmates are Running the Asylum: Why High-Tech
Products Drive Us Crazy and How to Restore the Sanity. SAMS, Indi-
anapolis, 1999.

[8] Alan Cooper and Robert Reinman. About Face 2.0: The Essentials of
Interaction Design. John Wiley & Sons, 2003.

[9] F. Dawson and T. Howes. RFC 2426 - vcard mime directory profile. IETF
RFC, September 1998. http://www.ietf.org/rfc/rfc2426.txt.

[10] The friend of a friend (foaf) project homepage, Last visited February
2005. http://www.foaf-project.org/.

[11] T. R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. In International Journal of Human-Computer Studies,
volume 43, pages 907–928, 1995.

[12] Harry Halpin, Brian Suda, and Norman Walsh. An ontology for vcards.
W3C Note, November 14 2006. http://www.w3.org/2006/vcard/ns.

[13] Renato Iannella. Representing vCard objects in RDF/XML. W3C Note
22 February 2001, 2001. http://www.w3.org/TR/vcard-rdf.

[14] E Mackay, A.V. Ratzer, and P Janecek. Video artifacts for design: bridg-
ing the gap between abstraction and detail. In Designing interactive
systems: processes, practices, methods, and techniques, DIS ’00. ACM
Pres, 2000.

[15] Knud Möller, Uldis Bojārs, and John G. Breslin. Using Semantics to En-
hance the Blogging Experience. In The third European Semantic Web
Conference, pages 679–696, Budva, Montenegro, June 2006.

[16] Ed. P. Saint-Andre. RFC 3920 - extensible messaging and presence pro-
tocol (XMPP): Core. IETF RFC, October 2004. http://www.ietf.org/

rfc/rfc3920.txt.

Deliverable D6.2.A Version 1.0 25

NEPOMUK 03.09.2007

[17] Gerald Reif, Gian Marco Laube, Knud Möller, and Harald Gall. Sem-
Clip - overcoming the semantic gap between desktop applications. In 5th
Semantic Web Challenge at the 6th International Semantic Web Confer-
ence, Busan, South Korea, November 11-15 2007. Springer-Verlag.

[18] L. Sauermann, G. AA. Grimnes, M. Kiesel, C. Fluit, H. Maus, D. Heim,
D. Nadeem, B. Horak, and A. Dengel. Semantic desktop 2.0: The gnow-
sis experience. In Proc. of the ISWC 2006 Conference, Nov 2006.

[19] S.K. Semy, M.K. Pulvermacher, and L.J. Obrst. Toward the
use of an upper ontology for U.S. government and U.S. military
domains: An evaluation. Technical report, MITRE, September
2004. http://colab.cim3.net/file/work/SICoP/ontac/reference/

SemyObrstPulvermacher04.pdf.

[20] Michael Sintek, Ludger van Elst, Simon Scerri, and Siegfried Handschuh.
Distributed knowledge representation on the social semantic desktop:
Named graphs, views and roles in NRL. In Proceedings of the 4th Euro-
pean Semantic Web Conference (ESWC), 2007.

[21] Semantic web research community ontology (SWRC), Last visited Au-
gust 2007. http://ontoware.org/projects/swrc/.

[22] Norman Walsh. Extracting vcards from hcard markup, December 12
2005. http://norman.walsh.name/2005/12/12/vcard.

Deliverable D6.2.A Version 1.0 26

